

March 14, 2025

SUBMITTED VIA EMAIL

Thomas.Ferguson@mass.gov

Thomas Ferguson
Department of Energy Resources
100 Cambridge Street, 9th Floor
Boston, MA 02114

83E ROUND 1 COMMENTS

Dear Mr. Ferguson,

Jupiter Power LLC (Jupiter) submits these comments in response to the Department of Energy Resources' (DOER) and the Attorney General's Office ("AGO") (collectively "RFP Drafting Parties") request for public comments on areas relevant to a forthcoming Request for Proposals ("RFP") for a Section 83E first-round solicitation for mid-duration energy storage projects ("83E Round 1").

Jupiter is a leading developer and owner/operator of standalone, utility-scale battery energy storage projects in the U.S., with ten battery storage projects in construction or commercial operation and over 100 projects in development, including in Massachusetts.

Jupiter thanks DOER for opening up this process to comment on the forthcoming 83E Round 1 solicitation, and this next exciting chapter for Massachusetts' clean energy transition. We have not provided responses to every question in the request for comments but have focused on the RFP issues that we believe are most pressing to ensure that the Round 1 solicitation leads to the successful development of the most viable and impactful utility-scale storage projects possible in Massachusetts.

We also note that Jupiter has submitted under separate cover a set of 6 recommendations for the 83E Round 1 solicitation in collaboration with the storage companies Flatiron Energy, New Leaf, Blue Wave, and Cypress Creek Renewables. Those joint comments are included here as an exhibit and are incorporated by reference.

Respectfully Submitted,

Samantha Williams
Senior Director of Strategic Projects and Market Development
Jupiter Power LLC

SUMMARY OF RECOMMENDATIONS:

- **Schedule** – expedite the Round 1 procurement to ensure projects have fully executed and DPU-approved contracts by the end of summer 2026. Follow Round 1 immediately with a Round 2 procurement, launched in late summer/early fall 2026.
- **Environmental attributes** – limit the 83E Round 1 procurement to CPECs and specify that eligible projects must fall under the definition of “Qualified Energy Storage Systems” in the CPS regulations at 225 CMR 21.02.
- **SoQ qualification** – do not require an SoQ as a condition of bidding but rather focus on key metrics for Project Viability.
- **Bid size** – do not set limits on minimum or maximum bid sizes, but rather limit bidders to one project per bid (with no limit on the number of bids coming from a single developer) and do not allow combining multiple projects into a single “portfolio bid.”
- **Minimum delivery requirements** – projects can be financed and operated through the procurement of CPECs on either an “as-produced” or a “fixed quantity” basis, but it is most important that the RFP identify clear ramifications (i.e., penalties or lack thereof) should a winning project fall short in a given year.
- **Maturity requirements** – award significant additional points to projects that demonstrate advanced status in the ISO-NE queue, with signed interconnection agreements (IAs) at the time of bidding as the highest possible points awarded, followed by projects with a completed System Impact Study (SIS). Consider negative points for “speculative” bids, as DOER did in the most recent offshore wind RFP.
- **Existing projects** – focus this RFP on maximizing the selection of, and long-term contracts for, *new* storage resources (in particular those not already supported by a state program, like SMART), which will add sorely needed storage capacity in the Commonwealth to meet its climate goals, lower costs, and enhance grid resiliency. Award additional points to new projects not already operating at the time of bid, or exclude resources with CPEC multipliers <1, or apply negative points to projects already in operation or construction.
- **Federal tax credits (and tariffs)** – employ a price protection adjustment mechanism, similar to that used in the most recent offshore wind RFP (Sec. 83C IV), with minor modifications to incorporate tariff and ITC risks, warding against repeated re-bids or cancellations.
- **Commercial operation date** – rather than a firm COD requirement, focus on maturity by awarding later stage projects significant additional points to ensure the projects that are most viable and have the most certainty on their costs are selected and can move forward.
- **Resource Types** – given the significant volume of advanced-stage transmission-connected projects (e.g., over 2,350 MW with completed SIS), and difficulty verifying the volume of similarly advanced-stage distribution-connected projects, a carve out for Round 1 is not appropriate. If DOER opts to include one, we recommend a total volume of not more than 100 MW for distribution-connected projects.
- **Project viability and other qualitative factors** – apply *at least* a 65/35 split on Quantitative to Qualitative factors in bid assessments, to provide greater emphasis on project maturity and

viability, as well as to ensure that the state meets its multi-faceted policy goals for storage procurement. Focus Qualitative scoring on project viability criteria, in particular, project maturity, site control, permitting status, and bidder experience. Well-timed development securities will also prevent unsophisticated bidders from offering unrealistic bid prices and winning contracts for projects that can never be delivered on.

- **Grid Resiliency and Transmission Needs** – award additional points to projects that demonstrate critical grid benefits (enhanced reliability, reduced winter electricity price spikes, etc.), particularly in load pockets. These points should be awarded in both the Qualitative and Quantitative categories.
- **Economic Development, Workforce, DEI, and Environmental Justice** – award additional points to projects that demonstrate community benefits and/or Brownfield remediation in specific geographic locations, including in EJ and transitioning fossil fuel communities. Scoring should recognize strong workforce development programs and projects with broad employment benefits, community benefits, etc.—both of which have precedent in recent renewables procurements.

RESPONSE TO QUESTIONS:

1. Procurement Schedule:

a) *The factors the RFP Drafting Parties should consider when designing the schedule for the 83E Round 1 solicitation, including deadlines for bid submission and selection of projects for negotiation. Please include as much specificity in key schedule milestones and timing as well as justification for preferred dates.*

- In designing the 83E Round 1 solicitation, Jupiter recommends that the RFP Drafting Parties consider both the commercial realities that developers face with respect to advanced-stage projects, as well as the state's goal of getting significant levels of storage online before 2030.
- We recommend that DOER adopt a Round 1 procurement to ensure projects have fully executed and DPU-approved contracts *by the end of summer 2026*.
- Adhering to this schedule, while quick, will support the 1,000s of MWs of storage projects that are in advanced stages of development in Massachusetts. Many of these projects have existential financial decisions in 2025/early 2026, putting *binding time pressure* on the procurement schedule. Those decisions include, e.g., the signing of generator interconnection agreements, closing on land deals, ordering equipment, and meeting ISO-NE capacity market obligations.
- For projects looking to come online by 2028 or 2027, the timeline is already tight to complete the procurement process, negotiate contracts, and see those contracts through the DPU approval process. Financing can only be secured once contracts are 100% enforceable, and financing is a prerequisite to project construction. Once financing is secure, construction can begin but will take at least (and often more) than 2 years from securing an award.¹ Therefore, completing all

¹ Some projects could take more than 2 years to build, such as on Brownfields that involve significant environmental cleanup, leaving these desirable fossil-to-clean developments even more vulnerable to delays in the Round 1 procurement process.

the steps in the Round 1 procurement by late summer/early fall 2026 is paramount to keep these advanced-stage projects on schedule.

- Below is a reasonable, pragmatic timeline for the Round 1 procurement. The proposed timeline allows shovel-ready projects to continue development during the procurement process and secure financing to complete project development.² *Jupiter will provide confidential comments under separate cover detailing the commercial timeline for our projects that is driving this critically important timeline.*

Round 1 Event	Round 1 Dates
Issue RFP	July 31, 2025 (reflects statutory requirement)
Bidders Conference	August 14, 2025
Deadline for Submission of Questions	August 21, 2025
Due Date for Submission of Confidential and Public Proposals	September 12, 2025 at 12:00 (noon) EDT
Selection of Projects/Commence Negotiations	November 7, 2025
Execute Long Term Contracts and MOU with DOER	January 15, 2026
Submit Long Term Contracts for DPU Approval	February 15, 2026
DPU Approval of Contracts	August 15, 2026 (6-months per statute)

² This schedule differs from earlier versions presented to DOER in that the turnaround time for the *bidders* has been reduced, rather than for DOER.

b) How the 83E schedule could be designed to best align with other energy storage procurements being conducted or planned in neighboring New England states.

- No comment at this time.

2. Environmental Attributes:

a) The environmental attributes in addition to Clean Peak Energy Certificates (“CPECs”) that could be procured from your project.

- Jupiter recommends limiting the 83E Round 1 (and Round 2) procurement to CPECs.
- The 2024 Energy Act (which amended the Green Communities Act, Ch. 169 of the Acts of 2008), specifies that the first procurement of 1,500 megawatts of mid-duration storage by July 31, 2025 shall be for environmental attributes only. The “environmental attributes” defined in the 2024 Energy Act that are most relevant—and immediately available—to battery energy storage are the CPECs generated as part of the Clean Peak Standard (codified in section 17 of chapter 25A of the General Laws).
- Given that DOER has already worked through the mechanics of the CPS program and CPEC eligibility, and recently reformed key program elements to improve its bankability and incent storage developer participation, we believe that CPECs would be the most administratively straightforward environmental attribute to procure in the 83E Round 1 solicitation.
- Administrative efficiency is critical for Round 1, as there is a significant backlog of advanced-stage utility-scale projects that are waiting on this first procurement before moving to the final phases of financing and construction. Those projects have critical commercial decisions coming up in 2025 and 2026 and will be depending heavily on an efficient procurement that yields fully executed and DPU-approved contracts by late summer/early fall 2026.
- In focusing the 83E Round 1 solicitation on CPECs, Jupiter recommends that DOER specify in the RFP that eligible projects must fall under the definition of “Qualified Energy Storage Systems” in the CPS regulations at 225 CMR 21.02.
- Finally, Jupiter observes that the CPS regulations (225 CMR 21.045(1)) and associated Guideline on Clean Peak Resource Eligibility focuses eligibility for the program on resources that are interconnected with or offset load otherwise served by the Distribution System, or that are interconnected with the Transmission System, in the Commonwealth of Massachusetts. Therefore, focusing the procurement on CPECs will ensure that Massachusetts communities benefit from locating storage projects primarily in-state, including the associated local grid resilience, fossil generation transition, and community investment benefits.

3. Clean Peak Qualification:

a) Any barriers to energy storage facilities qualifying for the Clean Peak Standard (“CPS”) or other attribute-generating program.

- Jupiter is not aware of any barriers to entry. However, consistent with industry practice for procurements, projects will need contractual protections from any change in law that would affect the ability of storage resources to generate CPECs.

b) Whether you have been awarded a Clean Peak Program Statement of Qualification (“SoQ”) for the project you intend to bid into this solicitation. If not, whether you anticipate having a SoQ prior to bidding your project.

- It is Jupiter’s understanding that new projects bidding into a DOER solicitation will not yet have a Clean Peak Statement of Qualification (SoQ), as projects need either Permission to Operate (PTO) and/or Authorization to Interconnect (ATI) per the SoQ Required Documents list. Therefore, making an SoQ a threshold to eligibility would drastically limit the number of projects eligible for the procurement.
- Thus, we recommend that DOER not require an SoQ as a condition of bidding and instead focus on key metrics for Project Viability as discussed elsewhere in these comments.
- Finally, given that projects will not have gone through the CPS SQA process prior to submitting a bid, we recommend that all bids for projects proposed to interconnect to the transmission system where such interconnection point is with transmission system that is located in the Commonwealth, must also self-certify that they do not have a contractual obligation to deliver energy to a location outside the Commonwealth.

4. Eligible Bids:

a) Project’s technology type (e.g., lithium ion, flow batteries, thermal, etc.), and how it meets the defined Section 83E criteria.

- No comment at this time.

b) Appropriate minimum and/or maximum bid size, both in terms of MW and Attributes.

- In order to encourage robust competition, Jupiter does not believe that the procurement needs to set limits on minimum or maximum bid sizes.
 - All energy storage systems, as defined in section 1 of chapter 164 of the General Laws technologies, meeting the mid-duration energy storage definition and having technology that is technically viable should be eligible to bid.
 - Allowing the RFP evaluation team to assess a wide range of proposals is in the best interest of ratepayers.
- We do recommend, however, that bidders should be limited to one project per bid (with no limit on the number of bids coming from a single developer) as opposed to combining multiple projects into a single “portfolio bid.”

- Evaluation of portfolio bids would be impractical, as projects within the same bid package may have significantly different characteristics and/or necessitate distinct scoring.
- If any project within a portfolio bid becomes non-viable, the characteristics of the entire portfolio can change, creating a potential need for re-evaluation of the portfolio. For example, if a portfolio includes a project with benefits to an EJ community, and the portfolio receives points for that factor, and then the project in the EJ community becomes non-viable, then the whole portfolio would need to be reevaluated.
- Further, it would be challenging to fairly compare portfolio bids to single-project bids.

c) Minimum delivery requirements (e.g., a certain number of CPECs delivered that is a function of Qualified Energy Storage Systems (“QESS”) capacity)

- With respect to delivery requirements, Jupiter believes that storage projects can be financed and operated through the procurement of CPECs on either an “as-produced” or a “fixed quantity” basis. A hybrid approach with a set quantity (e.g., 80% of the total anticipated production) plus as-produced up to a cap (e.g., 20%) could provide utilities a level of certainty on the scale of the CPEC purchase volume while also allowing some developer flexibility to manage the operationally complex aspects of producing CPECs during monthly load peak.
 - No post-solicitation volume changes: Reductions imposed by DOER or the EDCs on contracted CPEC volumes compared to the original bids should not be allowed. Projects must be contractually protected from any later scaling down or rationing of the initially-agreed purchase volume.
- Most important, the delivery requirements that the RFP Drafting Parties set must be clear, including the ramifications (such as any penalties) in the event a winning project falls short of delivery requirements in a given year.
- If DOER does choose an offtake method with penalties, then DOER could ward against unintended consequences by making any delivery requirement over a multi-year period, leveling production requirements and accounting for factors outside of the supplier’s control. In any event, all compliance periods and penalties (if any) must be clearly identified in the RFP to ensure bidding consistency.

d) Appropriate project maturity requirements.

- Massachusetts and other New England states have experienced significant attrition in recent clean energy procurements, as winning projects failed to proceed under their successful bid. While some factors that led to this attrition were beyond the state and developers’ control, we recommend that DOER develop a process for this Round 1 procurement that specifically targets highly viable projects that are most likely to reach commercial operation.
- Jupiter recommends that DOER award significant additional points to projects that can demonstrate they are far advanced in the ISO-NE queue.

- Specifically, DOER should award significant additional points to projects that have signed interconnection agreements (IAs) at the time of bidding, with projects that have a completed System Impact Study (SIS) as a second priority for awarding points.
- While projects pending in the ISO-NE Cluster Study should be eligible to bid into Round 1, Cluster projects will not have their SIS completed at the time of bid, which renders them without a reliable cost basis to bid. Alternatively, DOER could assign negative points to projects without a completed SIS.
- This approach values projects that will have more cost certainty and less risk to future pricing and delays than projects still in the study phases, leading to more accurate and higher-quality pool of bids—and to a higher rate of selected projects reaching commercial operation.
- There are numerous advanced stage projects in the ISO-NE queue that can ensure a robust and highly competitive procurement, with more than 2,350 MWs of Massachusetts projects in the ISO-NE queue that have completed SIS and nearly 1,800 MWs which have executed IAs.³ When the RFP opens in July 2025, there may be even more projects with completed SIS and signed IAs. *Publicly available ISO-NE queue data is included with these comments as Exhibit 1.*
- The recent DOER Sec 83 procurements support this approach. Those RFPs have included “demonstrated progress in the interconnection process and credibility of interconnection schedule” as part of the Project Viability element in the qualitative bid assessment.
- As noted in the example above, Jupiter recommends that DOER also follow precedent from the Bidder Experience and Project Viability criteria in the most recent offshore wind RFP (Sec. 83C IV RFP), in which a bid could be awarded both positive points (as many as +15) and negative points (as many as -10) (based on detailed criteria in RFP sections 2.2.4.5 and 2.2.4.6). Negative points were given for projects that DOER deemed “speculative,” reflecting an urgency to advance shovel-ready projects.
- For additional related comments, please see the response Question 10 below.

5. Facilitating the Financing of Projects:

a) *How the requirement from Section 83E—that this solicitation provide a “cost-effective mechanism for facilitating the financing of beneficial, reliable energy storage systems”—could be applied under this RFP.*

- *Standards the RFP should set to confirm that projects are using this solicitation to facilitate financing.*
- *How those standards could be applied to existing projects to allow their participation in this RFP.*
- With respect to standards for existing projects, the primary objective of this storage procurement, as established by the 2024 Energy Act, is to facilitate the financing of critically needed energy storage projects.

³ These totals are normalized for participation of 2-hour projects in a procurement requiring 4-hour duration.

- While the legislation technically allows existing projects to participate, the procurement is *primarily* intended to facilitate the financing of *new* energy storage systems that have not yet been built, as they have encountered challenges with the bankability and effectiveness of the Clean Peak Program to date. It is important to note that, historically, procurements under Section 83 have been conducted to ensure additional new capacity to support the Commonwealth's goals that have likewise faced financing hurdles. Selection of already-operating projects (that are presumably already eligible or enrolled in CPS) would not increase the pool of operating assets in the Commonwealth. Not focusing an additional new capacity would mean that the goals of the program would not be achieved and ratepayer funds not expended cost-effectively.
- Those new projects will add sorely needed storage capacity in the Commonwealth. An RFP that is structured to facilitate financing will allow bidders to receive better capital terms that will result in more cost-effective bids. The Commonwealth needs more storage to meet its climate goals and using this Section 83E Round 1 procurement to facilitate that development will result in better financing terms and lower costs for ratepayers.
- As a result, Jupiter recommends that this RFP focus on maximizing the selection of, and long-term contracts for, new storage resources.
 - The CPS program recognizes the importance of adding new storage capacity in MA, applying a 0.1x CPEC modifier to existing storage resources, and those that already hold contracts (225 CMR 21.00, Sec. 21.05(6)(d)-(e)).
 - It is also critical that DOER maximize the Round 1 MWs (and therefore the maximum CPECs) of resources capable of producing at least 100% of their expected CPECs, i.e., that are not subject to negative CPEC multipliers.
 - To accomplish this, we recommend DOER consider the following:
 - Award additional points to storage projects that are not already in operation as of the time of the bid
 - Maximize the resource capable of producing at least 100% of expected CPECs by excluding resources with multipliers <1*; or
 - Apply negative points to projects already in operation or construction at the time of bid
- We also urge DOER to either exclude, or minimize the participation of, storage projects that are already receiving benefits through a previously-existing state incentive program, such as SMART.
 - The focus of the 2024 Energy Act's storage procurement requirements was to get significant new capacity of storage online in Massachusetts by providing a long-term contracting mechanism for storage systems that were not already in operation and not already receiving benefits from another state policy.
 - As a result, we recommend either excluding from the Round 1 eligibility smaller storage assets that are co-located with solar and are participating in the SMART program, or minimizing their participation by applying negative points in the qualitative analysis.

b) The application of tax credits, for example the Investment Tax Credit and associated guidance, towards the financing of new projects, including whether your project would still be fully financeable if these credits are not available.

- Storage projects are currently facing significant uncertainty related to federal policies, including tariffs, potential changes to tax credits (including the Investment Tax Credit), and other policy and economic fluctuations that could impact supply chain costs and ultimately contract prices.
 - The dynamics that complicated recent Sec. 83C III offshore wind procurement have, unfortunately, only become more unpredictable and impactful than they were in 2023.
 - One example is the potential that the rules for safe harboring equipment – typically a means of reducing a project’s change-in-law risk – could be changed.
- Jupiter recognizes the work DOER has done previously to address this issue in other Sec. 83 procurements. We recommend that a price protection adjustment mechanism, similar to the mechanism employed in the most recent offshore wind RFP (Sec. 83C IV), be used in this procurement, with minor modifications to incorporate tariff and ITC risks, warding against repeated re-bids or cancellations.
- To facilitate this approach, the forthcoming RFP should request sufficient information about pricing assumptions to obtain apples-to-apples bids, and to ensure that a future price adjustment mechanism can be fairly and accurately applied when (and if) the time comes.

c) The approximate percentage of your capital costs met by CPEC revenue, Energy/Energy Arbitrage, Ancillary Services (Regulation, etc.), and Forward Capacity Market:

- The most important factor for DOER to consider amongst future revenues for storage projects attempting to finance construction is that the CPEC revenues will be the only contracted revenues prior to construction.
- Because ISO-NE (subject to pending FERC approval) is in the process of transitioning to a “prompt” capacity auction process, only projects already in construction will be able to bid into the auction for capacity supply obligations years 2028-2029 and beyond. Resulting capacity revenues, as well as energy arbitrage and ancillary services revenues, will be unknown at the time that bids are submitted to DOER.
- Therefore, storage project finance will lean very heavily on contracted CPEC revenues.

d) The risks associated with each revenue over the life of the project.

- Generally, to get storage built in Massachusetts, projects are relying on a stable policy environment and no back-pedaling on defined contractual arrangements.
- Changes in the supply/demand and regulations for CPECs could result in any merchant CPEC production (above the level contracted through the RFP) being less valuable than anticipated. This issue is relevant for firm or as-produced CPEC bids leaving some level of spot market price exposure for a project’s revenue stack. Different developers will likely use different forward

curves for any merchant CPECs, so procurement volumes need to be very clearly identified and stable.

- CPECs alone represent a significantly smaller percentage of total revenue than full tolling agreements available in other regions. This increases the risk of contracted vs uncontracted revenue when building a project levelized value stack (risk adjusted levelized cost).
- Examples of instability in other revenue sources include:
 - Capacity Market reform – As previously mentioned, capacity revenues will no longer be contracted in advance of project financing and construction and are therefore unstable and unpredictable. Additionally, ELCC accreditation and market re-design could drastically change, and likely reduce, capacity revenues for 4hr storage over the next two decades. These changes are not predictable before COD and so any forecasted revenues will be highly discounted.
 - Ancillary services – these markets may saturate or change eligibility, reducing or eliminating this as a future revenue stream.
 - Energy arbitrage – Policy changes in New England that change the amount of renewables and conventional generation on the grid could impact energy prices. New energy technologies may dampen energy price volatility in the future, making this revenue stream difficult to predict and count on for financing.
- CPEC revenues contracted through DOER will be the only stability in this picture.

e) Please comment on the following examples of lifetime values pictured below from the Massachusetts Charging Forward report and how they may correspond to your project

- These levelized costs should be risk-adjusted for contracted vs. uncontracted revenues.
- This exercise may be potentially beneficial to weed out bad actors, however the levelized cost evaluation metric has stale assumptions since it was conducted 3-years ago. Furthermore, there are important differences in costs in levelized cost evaluation vs benefits to grid per locational differences.

f) How a project's participation in the ISO-NE market affects its bid.

- ISO-NE capacity auctions are short term (one year). Furthermore, for the 2028-2029 capacity obligation year the auction will likely be conducted on a “prompt” basis shortly prior to the obligation period, which means any participating project will need to finance construction or achieve operations prior to knowledge of the capacity price. This dramatically reduces or eliminates the ability of capacity revenues to support project financing.
- In the event that DOER procures fixed volumes of CPECs rather than as available volumes and establishes penalties for the shortfall of fixed volumes, DOER should consider that misalignment of scarcity events (energy prices) or capacity market must-offer hours and CPEC windows will occur. The bidder thus may need to incur (and seek to avoid) penalties to meet system scarcity requirements by dispatching outside of the CPEC windows. DOER could consider adding

system scarcity as excused volume shortfalls for fixed CPEC volumes. It may also need to periodically update the CPEC charge and discharge windows to properly align with the capacity market must-offer requirements. DOER could consider that longer duration storage may be able to manage this risk better than 4-hour storage, but longer duration storage is much more expensive as the utilization rates are so much lower.

- Participation in ancillary services market, like frequency regulation, may interfere with CPEC production, as the ISO dispatches the battery to follow a regulation signal that may mean the project charges during peak load windows and discharges during CPEC charging windows. If DOER would prefer that awarded projects do not risk this misalignment, it may disallow it, but that could reduce projected revenues for the project.

6. Commercial Operation Date:

a) Any appropriate commercial operation date for Section 83E Round 1.

- No. Rather than a firm COD requirement, we recommend that DOER focus on maturity by awarding later stage projects significant additional points (such as those with a signed IA) to ensure the projects that are most viable and have the most certainty on their costs are selected.
- Jupiter notes that including a required COD for a project could have the unintended consequence of forcing desirable projects out of the procurement—such as those on brownfields—that face greater schedule risks than greenfield projects to reach COD given significant environmental cleanup. Such a COD requirement could be inconsistent with preferences included in the 2024 Energy Act for fossil fuel communities.

7. Resource Types:

a) Whether this procurement should allow for both transmission and distribution connected resources.

b) The appropriate resource mix in Section 83E Round 1 procurement between distribution-connected QESS and transmission connected QESS.

- *If both distribution- and transmission-connected QESS are to be procured in Section 83E Round 1, please comment on:*
 - *The need, if any, for a carveout for either distribution- or transmission-connected QESS; and*
 - *The need, if any, for separate bidding criteria between distribution- and transmission-connected QESS to be considered by the RFP drafting parties.*
- Establishing a carve-out volume for distribution versus transmission connected projects requires an accurate assessment of the volume of projects available in both sectors within the context of the overall goal of 1,500 MW for the 2025 procurement.

- Transmission queue analysis identifies over 2,350 MW of projects with completed SIS, or enough for the entire solicitation. *Publicly available ISO-NE queue data is included at the end of these comments.*
- Distribution queue analysis is highly opaque but total MW of projects with completed studies not yet in construction could be very, very limited.
- In this context, a carve out is not appropriate.
- If DOER does opt to carve out or specify a minimum percentage of DG projects, we recommend no more than 100 MW for this Round 1 procurement. DOER rules identify bonus CPECs for 50 MW of DG projects ready to go, which would be a total volume of 100 MW worth of DG projects. Any carve out beyond this level would reduce competition, reduce DOER discretion, and potentially result in an under-procurement.

8. Contract Length and Form:

- a) *The contract length, for a period of up to 30 years, that should be considered under Section 83E Round 1 and associated reasoning, including how the contract term will facilitate the financing of the project, how the term aligns with useful life, augmentation schedules, etc.*
- Jupiter recommends that the Section 83E Round 1 procurement specify at least 15-20 year contract terms.
 - The procurement will help projects interconnecting at the transmission level overcome significant barriers for investment. The current CPS makes financing projects difficult due to the lack of long-term CPEC price certainty. Giving developers the ability to compete for contracts can eliminate this uncertainty.
 - As the *Charging Forward* report observes, without long-term contractual commitments with creditworthy counterparties, these projects cannot be financed and will not be built.⁴ This is an especially important point today as storage projects are potentially facing decreased wholesale market revenue potential due to the expected change from average to marginal accreditation in the ISO-NE capacity market.⁵
- New legislative procurement authority changes this dynamic, requiring distribution companies, in coordination with DOER, to enter into “long-term contracts” for energy storage systems (*lines 2274-2284*)
 - DOER has discretion to define contract length – “long-term contracts” for storage are defined as “up to 30 years” (*lines 2257-2262*).

⁴ DOER and MassCEC (Study) at 21-22.

⁵ See e.g., ISO-NE, *Capacity Auction Reforms Continued Discussion of Project Scope* 15, 42 (August 6, 2024), https://www.iso-ne.com/static-assets/documents/100014/a02_mc_2024_08_06_scope_considerations_car_iso_presentation.pdf. This would compound the challenges of already low FCM auction clearing prices as well as the recent elimination of the ISO-NE FCM 7-year price lock capacity auctions.

- A minimum term of 15-20 years is now standard in storage contracts and provides significant value, including lower costs. Longer term contracts provide the revenue certainty to unlock lower financing costs, enabling projects to bid lower (on a per unit basis) and reducing ratepayer costs
- In addition, contracts of *at least* 15-20 years more accurately reflect the useful life of the components in a battery facility
- As discussed above, capacity revenues are not available for projects in the 2028-2029 capacity supply obligation year (or later), so projects are more dependent on Clean Peak revenues to achieve sufficient contracted revenues.
- Jupiter therefore recommends at least 15 year contracts, and believes that 20 year is also appropriate.
- Recognizing the capital-intensive nature of utility-scale storage projects and need for long-term revenue certainty to secure financing, *the overwhelming majority of recent contracts in the states most active in procuring storage are for 15-20 years* (see, e.g., NY, CT, CA, MI, AZ, OR, NV, WA)
 - This trend also exists in Massachusetts. There is considerable precedent for 15-20 year PPAs in prior Sec. 83 procurements (e.g., Sec. 83C dockets DPU22-70 through 72, DPU20-16 through 18, DPU18-64 through 66).

b) Given the degradation of battery performance over time, how contractual provisions for operational security should be constructed to assure optimal/maximum performance for the duration of the contract.

- This question is relevant to Question 4(c) above related to delivery requirements for CPECs.
- If DOER selects a contract requiring that each selected project produce a firm number of CPECs annually, Jupiter recommends that DOER permit developers to bid an annually reducing (“tapered”) amount of CPECs to reflect a standard battery degradation rate, as well as bidding a lower price in the outer years to reflect that degradation.

c) For distribution-connected QESS, how the EDCs would develop manageable contract agreements, including but not limited to defined aggregations with one negotiated contract.

- No comment at this time.

9. Safety:

- a) Which safety standards should be required as a minimum baseline.**
- b) The safety systems, insurance requirements, relationships with emergency responders and host communities, emergency response plans, and any other necessary protections to keep adjacent communities safe.**

- Jupiter recommends that the Section 83 Round 1 procurement require all projects be compliant with NFPA 855: Standard for the Installation of Stationary Energy Storage Systems.
- An overview of major NFPA 855 design and safety requirements is presented below:
 - **Battery Technology and Hazard Analysis (HMA Reports)**
 - Project Design: BESS design should consider the specific behavior and risks associated with the technology type and project design. The project shall provide a comprehensive Hazard Mitigation Analysis (HMA) that reports the mitigation strategies employed by the battery system (i.e. deflagration panels, ventilation systems, fire alarm, gas detection, etc.).
 - **Emergency Response Planning (ERP Reports)**
 - Emergency Procedures: Establish emergency response protocols (ERP), including evacuation plans, fire response strategies, and appropriate notifications to local emergency services. The system should include clear signage and labeling to direct responders during emergencies.
 - Training: Ensure that personnel involved in operations, maintenance, and emergency response are properly trained in handling electrical fires, battery-related incidents, and safety protocols.
 - **Gas Detection and Monitoring**
 - Ventilation systems should be integrated with gas detection sensors capable of identifying hydrogen or other hazardous and combustible gases.
 - Sensors should trigger alarms and ventilation activation if gas levels approach 25% of the Lower Flammability Limit (LFL).
 - Monitoring systems should be connected to the Battery Management System (BMS) and facility emergency controls.
 - **Electrical Safety**
 - Disconnects and Emergency Shutdown: The project shall provide clear, labeled disconnects, with easily accessible emergency shut-off switches. The disconnects should be in compliance with NFPA 70 (National Electrical Code).
 - Grounding: Project shall implement proper grounding to prevent electrical faults and ensure safe operation.
 - **Ventilation and Thermal Management**
 - Temperature Control: Proper thermal management is critical to prevent overheating and maintain battery health. Cooling systems with thermal sensors shall be used to maintain the batteries within safe operating temperature ranges.
 - **Monitoring and Maintenance**
 - Battery Management Systems (BMS): Project shall install a reliable BMS to monitor individual cells and the entire system for overcharging, over discharging, temperature imbalances, and other parameters that could indicate hazardous conditions.
 - **Compliance with Local Codes and Regulations**

- Ensure compliance with all relevant national, state, and local codes, including NFPA 70 (National Electrical Code), NFPA 101 (Life Safety Code), and NFPA 1 (Fire Code), in addition to any specific local building codes or utility requirements (NFPA 855, Section 4.1).

10. Project Viability and Other Qualitative Factors:

- a) *Any risks associated with uncertainty related to tariffs on imports that may impact the supply chain for energy storage systems. Similarly, any risks associated with uncertainty related to the domestic supply chain. What strategies can be implemented to minimize these risks and increase project viability.*
 - Please see recommendations in response to Question 5(b) above.
- b) *The key elements that should be considered in evaluating project viability, including any minimum requirements for participating in the RFP. Please specifically comment on:*
 - *Site control*
 - *Interconnection studies*
 - *Technical and logistical viability*
 - *Ability to finance the project*
 - *Bidder experience*
- Jupiter recommends that DOER focus its scoring of projects in the Project Viability category (which, as we understand from previous Sec. 83 procurements is analyzed as part of the Qualitative factors), first and foremost on *project maturity* (such as signed IAs).
 - As a general matter, project viability and benefits are easier and more accurately evaluated for storage projects further along in the development process, and the risk of post-selection dropout for mature projects is far lower than earlier stage projects.
 - Robust project maturity requirements can help reduce the risk of attrition. Projects further along in the development process have more certainty on their interconnection costs, financing opportunities, and permitting outcomes, and are thus more likely to reach commercial operation.
 - Therefore, Jupiter recommends that, in addition to including certain minimum requirements for participation, we also recommend robust qualitative scoring for projects that can demonstrate that they are far advanced in the ISO-NE queue—such as having signed IAs at the time of bidding.
- With respect to the other threshold categories listed above (site control; technical and logistical viability; ability to finance the project; bidder experience), Jupiter suggests that the most recent offshore wind RFP (Sec. 83C IV) serve as a model for the storage RFP, with modifications necessary to translate offshore site control standards to onshore locations.
 - DOER should distinguish between projects with an IA, and projects with and without a final SIS but that have yet to sign their IAs. DOER should preference projects with

signed IAs though additional points, because unexpectedly high study costs arriving after a bid can undermine the ability of the bid price to finance a project.

- DOER should preference 100% site control for both the project site and any offsite gen-tie line (including any discretionary local government Grants of Location for gen-tie lines). If a project cannot with certainty construct a gen-tie line, there may not be a project. DOER's RFP should inquire regarding any outstanding site control or permitting needs for gen-ties.
- Permitting status is also a key issue for project viability. Projects with permits in hand have higher certainty than projects with permitting pending. Furthermore, at least prior to full implementation of new EFSB authorities, projects with local government permits outstanding will be more at risk than projects with only state permits outstanding. DOER's RFP should pointedly inquire about any outstanding discretionary local government permits and award points to projects without discretionary local government permitting risks.
- Jupiter recommends that bidder experience also be afforded appropriate weight in scoring, given how critical it is that selected bids advance to construction.
- Requiring that developers have demonstrated experience developing, financing, constructing, owning, and/or operating storage projects, in addition to other metrics, will be important and have a significant positive effect on project viability.
- Finally, procurements should be designed to prevent unsophisticated bidders from offering unrealistic bid prices and winning contracts for projects that can never be built at those prices – such as through a development security.
 - Jupiter recommends that the RFP Drafting Parties require a development security (e.g., \$10,000/ MW) be in place until a project reaches its COD, at which time the deposit is refunded.
 - While a development security is critical to ensure serious bids, we observe that the timing is an important detail for Round 1. This first procurement coincides with a period of transition with respect to the siting process in Massachusetts for clean energy projects.
 - The siting transition period under the 2024 Energy Act could lead to a temporary period of greater litigation uncertainty. Litigation uncertainty would persist for some period of time after permits are received and would likely overlap with the DPU's schedule of review of the contracts. Jupiter therefore recommends that DOER require 50% of the development security at the time that contracts are submitted to DPU for approval, and 50% within 10 business days of the DPU final approval of contracts. The initial half of the deposit is sufficient to ensure that developers making the posting would be acting in good faith.

c) Any other considerations that should be considered when drafting the RFP that would impact project viability.

- Quantitative vs. Qualitative factors – We recommend that DOER allocate sufficient weight to Qualitative factors (such as project maturity and viability), by applying *at least* a 65/35 split on Quantitative to Qualitative factors in bid assessments.
 - Recent renewables procurements employed a 70/30 Quantitative/Qualitative split, providing stronger emphasis on policy goals than earlier Sec. 83 procurements. This directional trend is appropriate to continue further with battery energy storage projects.
 - We recommend that the Section 83E Round 1 procurement provide even greater emphasis on Qualitative factors, as these factors will dictate whether a project can actually get built and provide a range of important benefits, allowing for greater alignment with policy goals and increased likelihood that the procurement results in successful projects.
 - We also note that with storage, as compared with renewables projects, certain objectives take on even greater importance—including the state’s goals of locating storage in key geographic areas, such as on brownfields, in environmental justice investment areas, transmission-constrained areas, and/or where there are winter resiliency concerns.
 - Providing an even greater focus on Qualitative factors for the storage procurement will reflect this dynamic and help DOER select the projects that help the state achieve its policy goals.
 - Finally, keeping two-thirds of the scoring still focused on Quantitative factors will ensure that the selected projects will be cost-effective, produce a range of benefits to the grid and consumers, and are the most likely to get built.
 - For comparison, NYSERDA is planning on a 60/40 price/non-price split for scoring bids in its forthcoming “bulk” battery storage procurement.⁶

d) How the above factors are considered in CPS Qualification.

- No comment at this time.

11. Grid Resiliency and Transmission Needs:

a) How Section 83E Round 1 may be designed to best encourage investments and commitments that maximize grid resiliency and fulfill transmission needs in specific geographic locations. Please be as specific as possible in describing resiliency and transmission needs.

⁶ NY DPU, Case 18-E-0130, NYSERDA [Bulk Energy Storage Implementation Plan Proposal](#), Sec. 2.5 Bid Evaluation Weighting and Criteria (October 18, 2024)).

- Jupiter recommends that DOER award additional points to projects that demonstrate critical grid benefits (enhanced reliability, reduced winter electricity price spikes, etc.), particularly in load pockets. These points should be awarded in both the Qualitative and Quantitative categories.
- As a threshold matter, this question implicates a key failing of the CPS program to date; that battery storage can provide more value to Massachusetts ratepayers and the grid than is currently reflected. Of note, the program previously did not explicitly recognize the value provided by projects in strategic locations in the state, e.g., those located within or near transmission-constrained major urban areas, such as the Boston load pocket.
- Without consideration of these benefits in the Round 1 procurement, significantly lower land prices outside of load pockets will drive most battery development to Central/Western MA, where storage is needed but may bring fewer benefits addressing imminent grid concerns.
- Thankfully, DOER has significant legislative authority and precedent for valuing local grid benefits in the 2025 storage procurement.
 - The 2024 Energy Act authorizes DOER in the Sec. 83E procurements to give preference to proposals that provide additional benefits or value to the electric power grid or communities, including, but not limited to: “supporting grid resiliency and transmission needs in specific geographic locations” (lines 2315-2323)
 - Recent renewables RFPs have included Reliability Benefits as a key factor in the qualitative bid assessment, in particular: “ability to provide enhanced electricity reliability within the Commonwealth” and “contributing to reducing winter electricity price spikes” (84C IV RFP, Sec. 2.2.3.2)
- While the above comments focus on the Qualitative assessment, grid benefits should also be afforded strong weight when assessing costs (and benefits) in the Quantitative analysis.
 - Those benefits include avoided transmission upgrade costs and reductions in loss of load probabilities in extreme weather events.

12. Economic Development, Workforce, and Diversity, Equity & Inclusion (DEI):

a) *How Section 83E Round 1 could be designed to best encourage investments and commitments that maximize economic benefits to the Commonwealth, particularly for transitioning fossil fuel communities, support workforce harmony, and advance DEI goals.*

- As discussed below, Jupiter recommends that the RFP Drafting Parties award additional points to projects that demonstrate community benefits and/or Brownfield remediation in specific geographic locations, including in transitioning fossil fuel communities.
- That additional scoring should recognize strong workforce development programs and projects with broad employment benefits, community benefits, etc.—both of which have precedent in recent renewables procurements.

Environmental Justice:

b) How Section 83E Round 1 could be designed to best encourage project design and investments that avoid negative impacts on, and direct positive benefits of the project to, Environmental Justice (“EJ”) communities.

- Jupiter recommends that the RFP Drafting Parties award additional points to projects that demonstrate community benefits and/or Brownfield remediation in specific geographic locations, including in EJ communities.
- DOER has significant legislative authority and precedent for valuing projects that provide community benefits:
 - The 2024 Energy Act authorizes DOER in the Sec. 83E procurement to give preference to proposals that provide additional benefits or value to the electric power grid or communities, including, but not limited to: “(ii) providing economic opportunities or public health benefits to environmental justice or disadvantaged communities; or (iii) creating economic opportunities in transitioning fossil fuel communities.” (lines 2315-2323). Criteria shall include “benefits to environmental justice populations and low-income ratepayers in the commonwealth...” (lines 2345-2368).
 - Recent renewables RFPs have included Economic Benefits to the Commonwealth as a key factor in the qualitative bid assessment, in particular: “economic development activities and investments that directly benefit economically distressed areas and Environmental Justice populations, especially those directly impacted by the project.” (84C IV RFP, Section 2.2.4.1)

13. Energy Storage Industry:

a) Any trends in or around the energy storage industry that may impact the Section 83E Round 1 procurement and how the RFP Drafting Team should account for them.

- No comment at this time.

14. Future RFPs:

a) Whether and how the RFP drafting team should consider inclusion of energy services in future 83E RFP Rounds, both in terms of how future RFPs would be similar or different from 83E Round 1’s RFP, which is only for environmental attributes.

- No comment at this time.

b) The use of indexing or other adjustment mechanism.

- As noted in respond to Question 5, the RFP should address potential regulatory risks such as elimination of federal Investment Tax Credit for storage and challenges with spikes in inflation

and the threat of federal tariffs on imports. DOER can borrow from language in offshore wind contracts for ideas for how to implement these protections.

15. Other:

a) Any additional comments that you believe should be known by or would be helpful to the RFP drafting team.

- No comment at this time.

Exhibit 1: ISO-NE Massachusetts interconnection queue data
Massachusetts storage projects with completed SIS in ISONE Interconnection Queue

Position	Alternative Name	Fuel Type	Net MW	Op Date	SIS Complete	IA	Project Status
1213	Holliston 130 - EMA ASO	BAT	4.99	11/30/2023	TRUE		
1582	Paxton BESS	BAT	3	12/02/2024	TRUE		
726	Cranberry Point Energy Storage	BAT	150	05/30/2025	TRUE	Executed	Operating
844	Medway Grid Battery Storage	BAT	250	12/01/2025	TRUE	Executed	Under Study
1304	Uxbridge Substation – NG Hopedale	BAT	4.99	12/31/2025	TRUE		
1306	West Group Study	BAT	4.948	12/31/2025	TRUE		
1307	Whitins Pond Substation – NG Hopedale	BAT	4.948	12/31/2025	TRUE		
1308	Whitins Pond Substation – NG Hopedale	BAT	6.994	12/31/2025	TRUE		
1272	West Springfield 45 MW BESS	BAT	45	05/08/2026	TRUE	Executed	
1252	Battery Storage	BAT	314.7	06/01/2026	TRUE		Not Started
1115	Hecate Energy Eastern Ave Energy Center	BAT	250	06/01/2026	TRUE	Executed	
1259	Battery Storage	BAT	20	11/09/2026	TRUE		Not Started
1117	Streamfield	BAT	202.4	06/28/2027	TRUE	Executed	
877	Energy Storage	BAT	170	05/31/2027	TRUE	Executed	
1320	Battery Storage	BAT	203.9	07/26/2027	TRUE	In Progress	
1143	Battery Storage	BAT	5	11/16/2027	TRUE		
1110	Norman Street Battery Storage	BAT	508.2	05/31/2028	TRUE	Executed	
1148	Lite Brite Battery Storage	BAT	48	03/18/2028	TRUE	Executed	
			204	05/26/2028	TRUE		
			24	05/26/2028	TRUE	Executed	
			SUM:	2,653			

Massachusetts storage projects with no completed SIS in ISONE Interconnection Queue

Position	Alternative Name	Fuel Type	Net MW	County	Sync Date	SIS Complete	Project Status
1409	Individual @ Montague	BAT	4.989999	Franklin	12/01/2024	FALSE	
1410	Individual @ Amherst	BAT	2	Hampshire	12/01/2024	FALSE	
1529	EE 2024 SEMA/Cape ASO Group Study	BAT	4.989999	Plymouth	12/31/2024	FALSE	
1579	RMLD DER Group Study	BAT	4.995999	Middlesex	02/15/2025	FALSE	
1583	HGE Group Study	BAT	4.949999	Hampshire	02/15/2025	FALSE	
1585	HGE Group Study	BAT	12.979999	Hampshire	03/01/2025	FALSE	
1580	RMLD DER Group Study	BAT	954	Middlesex	06/15/2025	FALSE	
1592	SHELD BESS	BAT	9.979999	Worcester	09/01/2025	FALSE	
1587	Battery Storage	BAT	3	Worcester	09/15/2025	FALSE	
1477	NG DG @ Sykes Road	BAT	9.998000	Bristol	12/31/2025	FALSE	
1474	NG NEMA Group DER Study	BAT	145	Essex	02/15/2025	FALSE	
1476	NG NEMA Group DER Study	BAT	351	Middlesex	02/15/2025	FALSE	
1248	Battery Storage	BAT	154.6560	Bristol	03/01/2026	FALSE	Under Study
1365	Battery Storage	BAT	059	Hampshire	06/12/2026	FALSE	Under Study
1363	Battery Storage	BAT	301.2600	Worcester	06/12/2026	FALSE	Under Study
1238	Battery Storage	BAT	098	Norfolk	06/15/2026	FALSE	Under Study
1397	Battery Storage	BAT	100.2399	Worcester	07/31/2026	FALSE	Under Study
1499	Battery Storage	BAT	979	Hampshire	09/30/2026	FALSE	Under Study
1467	Battery Storage	BAT	115.5999	Worcester	09/30/2026	FALSE	Under Study
1567	Battery Storage	BAT	153	Middlesex	11/30/2026	FALSE	Under Study
1551	Crystal Lake Substation - NG	BAT	514.7999	Worcester	11/30/2026	FALSE	Under Study
1174	WMA Group 3	BAT	878	Worcester	12/31/2026	FALSE	Under Study

1491	Canton 470 110A - 2023 EE GB ASO	BAT	4.989999 771	Norfolk	12/31/2 026	FALSE
1492	Medway 65 110A - 2023 EE GB ASO	BAT	4.947999 954	Middles ex	12/31/2 026	FALSE
1528	EE 2024 SEMA/Cape ASO Group Study	BAT	4.999199 867	Plymout h	12/31/2 026	FALSE
1571	Battery Storage	BAT	19.72999 954	Worcest er	02/28/2 027	Under Study
1560	Battery Storage	BAT	133.7960 052	Bristol	03/01/2 027	Under Study
1440	Battery Storage	BAT	151.5559 998	Hampde n	03/26/2 027	Under Study
1399	Battery Storage	BAT	92.43800 354	Hampde n	03/31/2 027	Under Study
1402	Battery Storage	BAT	171.6000 061	Hampde n	05/01/2 027	Under Study
1362	Battery Storage Increase (QP1238)	BAT	301.2600 098	Norfolk	06/25/2 027	Under Study
1373	Battery Storage Increase (QP1362)	BAT	140.4799 957	Norfolk	06/25/2 027	Under Study
1412	Battery Storage	BAT	179.4700 012	Bristol	09/15/2 027	Under Study
1460	Battery Storage	BAT	706.2999 878	Bristol	09/15/2 027	Under Study
1430	Battery Storage	BAT	237.5449 982	Bristol	09/16/2 027	Under Study
1556	Battery Storage	BAT	204.8179 932	Worcest er	09/27/2 027	Under Study
1197	Battery Storage	BAT	10/28/2 150	Bristol	027	FALSE
1555	Battery Storage	BAT	214.1567 993	Essex	12/01/2 027	Under Study
1557	Battery Storage	BAT	240.1576 996	Essex	12/01/2 027	Under Study
1558	Battery Storage	BAT	12/01/2 141.5	Bristol	027	FALSE
1177	Lashaway Substation - NG WMA Group 3	BAT	14.93999 958	Worcest er	12/31/2 027	FALSE
1182	Pratts Junc. Substation - NG WMA Group 3	BAT	14.93999 958	Worcest er	12/31/2 027	FALSE
1186	Treasure Valley Substation - NG WMA Group 3	BAT	9.991999 626	Worcest er	12/31/2 027	FALSE
1187	W. Charlton Substation - NG WMA Group 3	BAT	19.98399 925	Worcest er	12/31/2 027	FALSE
1510	Battery Storage	BAT	152.7552 032	Woceste r	12/31/2 027	Under Study
1509	Battery Storage	BAT	152.7552 032	Worcest er	12/31/2 027	Under Study

								POWER
1198	Storage	BAT	241.8000 031	Bristol	02/14/2 028	FALSE	Under Study	
1478	Battery Storage	BAT	50	Hampde n	02/24/2 028	FALSE	Under Study	
1545	Battery Storage	BAT	100.7520 981	Franklin	04/01/2 028	FALSE	Under Study	
1553	Battery Storage	BAT	135.6000 061	Middles ex	04/15/2 028	FALSE	Under Study	
1541	Battery Storage	BAT	101	Middles ex	05/01/2 028	FALSE	Under Study	
1517	Battery Storage	BAT	365.7999 878	Franklin	05/31/2 028	FALSE	Under Study	
1518	Battery Storage	BAT	139.5	Berkshir e	05/31/2 028	FALSE	Under Study	
1514	Battery Storage	BAT	408.1000 061	Worcest er	05/31/2 028	FALSE	Under Study	
1515	Battery Storage	BAT	508.3999 939	Berkshir e	05/31/2 028	FALSE	Under Study	
1513	Battery Storage	BAT	408.1000 061	Worcest er	05/31/2 028	FALSE	Under Study	
1543	Battery Storage	BAT	588.2999 878	Barnstab le	09/15/2 028	FALSE	Under Study	
1523	Battery Storage	BAT	253.8159 943	Norfolk	04/01/2 029	FALSE	Under Study	
1546	Battery Storage	BAT	202.0700 073	Berkshir e	12/05/2 029	FALSE	Under Study	
1542	Battery Storage	BAT	202.0700 073	Hampde n	12/23/2 029	FALSE	Under Study	
		SUM: 9302MW						