RESPONSE TO THE REQUEST FOR PROPOSALS FOR
Long-Term Contracts for an Offshore Wind Energy Project

New England Wind 1 and New England Wind 2

Prepared for
The Massachusetts Distribution Companies and the Massachusetts Department of Energy Resources

Prepared by
Avangrid
March 27, 2024
RESPONSE TO THE REQUEST FOR PROPOSALS FOR LONG-TERM CONTRACTS FOR AN OFFSHORE WIND ENERGY PROJECT

Prepared for

Fitchburg Gas & Electric Light Company d/b/a Unitil
Massachusetts Electric Company and Nantucket Electric Company, each d/b/a National Grid
NSTAR Electric Company d/b/a Eversource Energy

Massachusetts Department of Energy Resources

March 27, 2024

Submitted by

Avangrid
Avangrid Renewables
2701 NW Vaughn Street, Suite 300
Portland, OR 97210
Confidentiality Statement

Certain information in this document or electronic file is non-public, proprietary, commercial, and/or financial information ("Confidential Information"), which has been redacted from the version of this proposal marked “PUBLIC.” Avangrid intends for all such Confidential Information to remain confidential and for the version of this proposal marked “CONFIDENTIAL” to be treated as a non-public record that is exempt from disclosure under applicable laws and as set forth in the Request for Proposals issued on August 30, 2023.
Table of Contents

1. Certification, Project, & Pricing Data .. 1-1

2. Executive Summary ... 2-1

3. Operational Parameters ... 3-1
 3.1. Maintenance Outage Requirements.. 3-1
 3.1.1 Major Project Components ... 3-3
 3.1.2 Preventative Maintenance... 3-4
 3.2. Operating Constraints .. 3-5
 3.2.1 Weather-Related Conditions.. 3-5
 3.3. System Reliability, Safety, and Security ... 3-6
 3.3.1 Electricity Reliability ... 3-6
 3.3.2 System Safety ... 3-7
 3.3.3 Energy Security .. 3-9
 3.4. Moderation of System Peak Load ... 3-10
 3.4.1 Estimated Average Output .. 3-10
4. **Energy Resource Plan** .. 4-1
 4.1. Wind Resource Details ... 4-2
 4.1.1 Wind Data Collection Summary ... 4-2
 4.1.2 Wind Resource Assessment ... 4-6
 4.1.3 Net Annual Energy Production ... 4-7
 4.1.4 Power Curve .. 4-13
 4.1.5 Loss Assumptions .. 4-15
 4.2. Offshore Wind Energy Generation Delivery Plan 4-15
 4.2.1 Forward Capacity Market .. 4-17
 4.2.2 Energy Output and Generation Profile .. 4-17
 4.3. REC/Environmental Attribute Delivery Plan ... 4-22
 4.4. Additional Long-Term Contracts with Third Parties 4-23
 4.5. Energy Storage System Operations ... 4-24

5. **Financial/Legal** .. 5-1
 5.1. Long-Term Contracts for Financing ... 5-1
 5.2. Business Entity Structure .. 5-2
 5.3. Financing Plan .. 5-4
 5.3.1 Project Financing .. 5-4
 5.3.2 Financial Structure ... 5-5
 5.3.3 Debt and Equity Financing ... 5-5
 5.3.4 Estimated Construction Costs .. 5-5
 5.3.5 Projected Capital Structure .. 5-7
 5.3.6 Ownership Agreements ... 5-7
 5.4. Financing Experience .. 5-7
 5.4.1 Vineyard Wind 1 .. 5-8
 5.4.2 Onshore Renewables Projects .. 5-8
 5.4.3 Iberdrola Group Offshore Wind Project Financing Experience 5-9
 5.5. Financial Resources and Strength .. 5-10
 5.6. Financial Difficulties of Bidder ... 5-11
 5.7. Financial Forecasting ... 5-12
 5.8. Financial Statement and Annual Reports .. 5-14
 5.9. Board of Directors, Officers, and Trustees ... 5-15
 5.10. Required Security .. 5-17
 5.11. Disclosure of Credit Issues .. 5-17
 5.12. Utilization of Tax Credits ... 5-18
 5.12.1 Avangrid Renewables, LLC and Affiliates ... 5-21
 5.13. Tax Credits, Subsidies, and Grants ... 5-21
 5.14. Federal Domestic Content and Labor Requirements 5-21
 5.14.1 Avangrid Renewables, LLC and Affiliates ... 5-21
 5.15. Litigation, Disputes, and Appeals ... 5-22
 5.15.1 Avangrid Renewables, LLC and Affiliates ... 5-22
5.15.2 Vineyard Wind 1 Litigation, Disputes, and Claims ... 5-23
5.15.3 Park City Wind and Commonwealth Wind Litigation, Disputes, and Claims ... 5-25
5.16. Operating Life .. 5-26
5.17. Status of Financing .. 5-26
5.18. Previously Executed Agreements .. 5-27
5.19. Affiliated Entities and Joint Ventures ... 5-29
5.20. Bankruptcy ... 5-29
5.21. Conflict(s) of Interest .. 5-30
5.22. Offshore Wind Litigation, Disputes, or Complaints ... 5-30
5.23. Project Delays and Mitigation Strategies ... 5-31
5.23.1 Vineyard Wind 1 Commercial Operation Date Extension .. 5-31
5.23.2 Commonwealth Wind and Park City Wind .. 5-31
5.23.3 Plans to Avoid Delays and Development Issues ... 5-32
5.24. Distribution Company Litigation, Disputes, or Complaints .. 5-33
5.24.1 Park City Wind, Commonwealth Wind, and Electric Distribution Companies ... 5-33
5.25. Energy Purchase or Sale Litigation, Disputes, or Complaints .. 5-34
5.25.1 Previous Commonwealth Wind and Park City Wind Contracts ... 5-34
5.25.2 Customer Service Invoice Dispute .. 5-34
5.26. Governmental Agency Investigation .. 5-34
5.27. Regulatory and Other Approvals ... 5-35
5.28. FERC Compliance .. 5-35
5.28.1 Generation .. 5-35
5.28.2 Transmission .. 5-36
5.29. Direct and Indirect Affiliates .. 5-36

6. Siting, Interconnection, and Deliverability ... 6-1
6.1. Site Plan .. 6-2
6.1.1 Offshore Wind Energy Generation Facilities ... 6-3
6.1.2 Offshore Export Cable Routes ... 6-4
6.1.3 Onshore Equipment and Facilities ... 6-6
6.2. Property Rights .. 6-16
6.2.1 Offshore Property Rights .. 6-21
6.2.2 Onshore Property Rights .. 6-22
6.3. Zoning and Permitting .. 6-24
6.3.1 Zoning ... 6-25
6.3.2 Permitting ... 6-26
6.3.3 Permitting Plan and Timeline ... 6-27
6.4. Site Description .. 6-27
6.4.1 Eligible Facility Site Location ... 6-27
6.4.2 Offshore Delivery Facilities .. 6-27
6.5. Interconnection Facility Site Control .. 6-32
6.6. Interconnection Requests ... 6-32
6.6.1 New England Wind 1 ... 6-32
6.6.2 New England Wind 2 ... 6-33
6.7. Joint State Innovation Partnership for Offshore Wind .. 6-34
6.8. Electrical System Performance .. 6-34
 6.8.1 Improving System Reliability .. 6-35
 6.8.2 System Impact Studies .. 6-35
 6.8.3 1.3.9 Approval ... 6-37
6.9. Deliverability Constraint Analysis .. 6-37
 6.9.1 New England Wind 1 ... 6-37
 6.9.2 New England Wind 2 .. 6-38
6.10. Additional Interconnection Requests ... 6-38
6.11. Network Upgrades ... 6-39
 6.11.1 New England Wind 1 .. 6-39
 6.11.2 New England Wind 2 .. 6-40
6.12. Alternative Interconnection Scenario .. 6-41
6.13. Electrical Models .. 6-42
6.15. Current and New Interconnection Facilities .. 6-43
6.16. Incremental Data Requirements .. 6-43
6.17. Production/Delivery Profile .. 6-45

7. Environmental Assessment, Permit Acquisition Plan, and Environmental Attributes Certification .. 7-1
7.1. Permits, Licenses, and Environmental Impact Statements 7-2
 7.1.1 Federal Permits and Approvals ... 7-3
 7.1.2 State Permits and Approvals .. 7-7
 7.1.3 Regional and Local Permits and Approvals .. 7-10
7.2. Permitting Timeline .. 7-12
 7.2.1 Federal Permitting Timeline ... 7-13
 7.2.2 State, Regional, and Local Timelines .. 7-15
7.3. Engagement and Environmental Track Record .. 7-17
 7.3.1 Stakeholder Relationships .. 7-18
 7.3.2 Avoiding, Minimizing, and Mitigating Project Impacts 7-23
7.4. Fisheries Mitigation Plan .. 7-26
7.5. Environmental Mitigation Plan .. 7-27
7.6. Environmental Justice Impact Assessment ... 7-27
7.7. Public Support and Community Engagement Plan .. 7-28
7.8. New Class I Renewable Eligible Resource .. 7-29
7.9. New England Power Pool GIS Account ... 7-30
7.10. Claims or Litigation .. 7-30

8. Engineering and Technology; Commercial Access to Equipment 8-1
8.1. Preliminary Engineering Plan ... 8-4
 8.1.1 Type of Generation and Delivery Technology .. 8-4
 8.1.2 Major Equipment Components .. 8-5
10.3.1 Foundations – Monopiles, TPs and Scour Protection .. 10-25
10.3.2 ESP ... 10-32
10.3.3 Offshore Export Cables .. 10-35
10.3.4 Inter-Array Cables .. 10-39
10.3.5 WTGs ... 10-41
10.3.6 Onshore Works ..10-46
10.3.7 The Coastwise Laws (Jones Act) ... 10-48

10.4 Parties Involved.. 10-52

11. Operations and Maintenance ... 11-1

11.1.1 Logistics Strategy ... 11-3
11.1.2 Organization and Workforce Strategy ... 11-6
11.1.3 Project Maintenance Strategy ... 11-7
11.1.4 Spare Parts ... 11-10
11.1.5 Systems and Tools Strategy ... 11-10
11.1.6 Health and Safety Strategy .. 11-12
11.1.7 Risk Management Strategy ... 11-12

11.2. Marine Terminals and Waterfront Facilities Site Control 11-12
11.2.3 Martha’s Vineyard ... 11-14
11.3. Funding Mechanisms and Levels for Operations and Maintenance .. 11-16

11.4. Equipment Warranties and Guarantees .. 11-17
11.4.1 Wind Turbine Generators .. 11-17
11.4.2 Balance of Plant ... 11-18

11.5. Status and Plans for Operations and Maintenance Agreements/Contracts ... 11-19
11.5.2 ... 11-21

11.6. Experience with Operations and Maintenance Services for Similar Projects .. 11-21
11.6.1 Avangrid... 11-21
11.6.2 Iberdrola ... 11-22

12. Project Management/Experience ... 12-1

12.1. Organizational Chart .. 12-1
12.1.1 Corporate Structure .. 12-2
12.1.2 Project Ownership History ... 12-3
12.1.3 Project Team ... 12-4
12.1.4 Key Consultants and Service Providers .. 12-4

12.2. Project Experience ... 12-5
12.2.1 Avangrid Experience .. 12-5
12.2.2 Iberdrola Group ... 12-7
12.2.3 Project Development Partners .. 12-9

12.3. Management and Key Personnel ... 12-12
12.3.1 Avangrid Executive Team ... 12-13
13. Demonstrated, Verifiable Commitment to Create & Foster Employment & Economic Development & Other Direct Benefits .. 13-1

13.0. Overview ... 13-2
13.0.1 Strong Commitments Backed by Firm Partnerships ... 13-3
13.0.2 Summary of Major New England Wind 1 Initiatives .. 13-5
13.0.3 Summary of New England Wind 2 Additional Benefits 13-9
13.0.4 Detailed Descriptions of Major Initiatives .. 13-11

13.1. Job Creation ... 13-38
13.1.1 Development Direct Jobs ... 13-41
13.1.2 Construction Direct Jobs ... 13-42
13.1.3 Operations Direct Jobs ... 13-44
13.1.4 Impacts on Economically Distressed Areas .. 13-45
13.1.5 Strong Commitments to Workforce DEI ... 13-46

13.2. Tax Credits .. 13-48

13.3. Economic Activity and Development .. 13-50
13.3.1 Investments in Supply Chain Improvements ... 13-53
13.3.2 Workforce Development ... 13-54

13.4. Contractual Commitments ... 13-58

13.5. Additional Benefits (Section 2.2.4.1 Factors) ... 13-60

13.6. Low-Income Ratepayer Impacts and Benefits .. 13-63

13.7. Diversity, Equity, and Inclusion Plan ... 13-65

13.8. Tracking and Reporting .. 13-66
13.8.1 Vineyard Wind 1 Tracking and Reporting ... 13-70

13.9. Economic Development Summary Sheet .. 13-71

14. Exceptions to Form PPA ... 14-1

15. Exceptions to Form Commitment Agreement ... 15-1
List of Figures

Figure 4.1-1 New England Wind FLiDAR Buoy ... 4-1
Figure 4.1-2 Measurement and Study Locations of Primary Data Sources............ 4-5
Figure 4.1-3 Overview of Time Spans for the Sources in Figure 4.1-2 4-5

Figure 4-1-2

Figure 4.1-3

Figure 4.1-4

Figure 4.1-5

Figure 4.1-6

Figure 5.2-1 Avangrid Business Entity Ownership Structure 5-3

Figure 6.1-3 New England Wind 1 Onshore Interconnection Site Plan 6-7
Figure 6.1-4 New England Wind 2 Onshore Interconnection Site Plan 6-8
Figure 6.1-5 New England Wind 1 Landfall Site Plan .. 6-9
Figure 6.1-6 New England Wind 2 Preferred Landfall Site Plan 6-10
Figure 8.1-2 Offshore Wind Energy Generation and Delivery Facilities 8-5
Figure 8.1-3 Wind Turbine Generator ... 8-6
Figure 8.1-4 Monopile Foundation Concept ... 8-11
Figure 8.1-7 Electrical Service Platform Concept .. 8-22
Figure 10.2-1 Rendering of Salem Offshore Wind Terminal 9-3
Figure 11.1-1 Avangrid O&M Framework ... 11-3
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1-1</td>
<td>Outage Requirements</td>
<td>3-2</td>
</tr>
<tr>
<td>Table 3.4-1</td>
<td></td>
<td>3-10</td>
</tr>
<tr>
<td>Table 4.1-1</td>
<td>Primary Sources Used to Assess Wind Conditions</td>
<td>4-3</td>
</tr>
<tr>
<td>Table 4.1-2</td>
<td>Projected Gross and Net Annual Production (p50 and p90)</td>
<td>4-8</td>
</tr>
<tr>
<td>Table 4.1-3</td>
<td>New England Wind 1 Average Seasonal and Diurnal Net Energy Production (p50)</td>
<td>4-9</td>
</tr>
<tr>
<td>Table 4.1-4</td>
<td>New England Wind 1 Seasonal and Diurnal Net Energy Production (p90)</td>
<td>4-10</td>
</tr>
<tr>
<td>Table 4.1-5</td>
<td>New England Wind 2 Average Seasonal and Diurnal Net Energy Production (p50)</td>
<td>4-11</td>
</tr>
<tr>
<td>Table 4.1-6</td>
<td>New England Wind 2 Seasonal and Diurnal Net Energy Production (p90)</td>
<td>4-12</td>
</tr>
<tr>
<td>Table 4.2-1</td>
<td>Estimated Output for Peak Periods for New England Wind 1</td>
<td>4-13</td>
</tr>
<tr>
<td>Table 4.2-2</td>
<td>Estimated Output for Peak Periods for New England Wind 2</td>
<td>4-17</td>
</tr>
<tr>
<td>Table 5.4-1</td>
<td>Financing of Iberdrola Group’s Offshore Wind Projects</td>
<td>5-10</td>
</tr>
<tr>
<td>Table 5.8-1</td>
<td>Avangrid, Inc. and Iberdrola Annual Reports Attachments</td>
<td>5-15</td>
</tr>
<tr>
<td>Table 5.8-2</td>
<td>Credit Ratings for Avangrid, Inc. (as of December 2023)</td>
<td>5-15</td>
</tr>
<tr>
<td>Table 5.9-1</td>
<td>Avangrid Renewables, LLC Board of Managers</td>
<td>5-15</td>
</tr>
<tr>
<td>Table 5.19-1</td>
<td>Affiliates Attachments</td>
<td>5-29</td>
</tr>
<tr>
<td>Table 6.2-1</td>
<td>Status of Real Property Rights Acquisition – New England Wind 1</td>
<td>6-17</td>
</tr>
<tr>
<td>Table 6.2-2</td>
<td>Status of Real Property Rights Acquisition – New England Wind 2</td>
<td>6-19</td>
</tr>
<tr>
<td>Table 6.12-1</td>
<td>New England Wind 1 and New England Wind 2 Interconnection</td>
<td>6-41</td>
</tr>
</tbody>
</table>

Table 3.1-1: Outage Requirements
Table 3.4-1:
Table 4.1-1: Primary Sources Used to Assess Wind Conditions
Table 4.1-2: Projected Gross and Net Annual Production (p50 and p90)
Table 4.1-3: New England Wind 1 Average Seasonal and Diurnal Net Energy Production (p50)
Table 4.1-4: New England Wind 1 Seasonal and Diurnal Net Energy Production (p90)
Table 4.1-5: New England Wind 2 Average Seasonal and Diurnal Net Energy Production (p50)
Table 4.1-6: New England Wind 2 Seasonal and Diurnal Net Energy Production (p90)
Table 4.2-1: Estimated Output for Peak Periods for New England Wind 1
Table 4.2-2: Estimated Output for Peak Periods for New England Wind 2
Table 5.4-1: Financing of Iberdrola Group’s Offshore Wind Projects
Table 5.8-1: Avangrid, Inc. and Iberdrola Annual Reports Attachments
Table 5.8-2: Credit Ratings for Avangrid, Inc. (as of December 2023)
Table 5.9-1: Avangrid Renewables, LLC Board of Managers
Table 5.19-1: Affiliates Attachments
Table 6.2-1: Status of Real Property Rights Acquisition – New England Wind 1
Table 6.2-2: Status of Real Property Rights Acquisition – New England Wind 2
Table 6.12-1: New England Wind 1 and New England Wind 2 Interconnection
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1-1</td>
<td>Federal Permits and Approvals</td>
<td>7-3</td>
</tr>
<tr>
<td>7.1-2</td>
<td>State Permits and Approvals</td>
<td>7-8</td>
</tr>
<tr>
<td>7.1-3</td>
<td>Regional and Local Permits and Approvals</td>
<td>7-11</td>
</tr>
<tr>
<td>8.1-1</td>
<td>New England Wind 1 Major Equipment Procurement Status</td>
<td>8-2</td>
</tr>
<tr>
<td>8.1-2</td>
<td>Geophysical and Geotechnical Investigations and Reports</td>
<td>8-8</td>
</tr>
<tr>
<td>8.1-6</td>
<td>Inter-Array Cable Cross-Section Designs</td>
<td>8-20</td>
</tr>
<tr>
<td>8.1-7</td>
<td></td>
<td>8-28</td>
</tr>
<tr>
<td>8.1-8</td>
<td>New England Wind 1 Duct Bank Detailed Design Schedule</td>
<td>8-29</td>
</tr>
<tr>
<td>8.1-9</td>
<td>New England Wind 1 Water Main Detailed Design Schedule</td>
<td>8-29</td>
</tr>
<tr>
<td>8.1-10</td>
<td>Sewer Project Detailed Design Schedule</td>
<td>8-29</td>
</tr>
<tr>
<td>8.1-12</td>
<td>Equipment Manufacturer Selection Factors</td>
<td>8-33</td>
</tr>
<tr>
<td>8.3-1</td>
<td>WTG Deployment Status</td>
<td>8-42</td>
</tr>
<tr>
<td>9.1-1</td>
<td>New England Wind 1 Key Project Activities and Critical Path Activities</td>
<td>9-6</td>
</tr>
<tr>
<td>9.1-2</td>
<td>New England Wind 2 Key Project Activities</td>
<td>9-11</td>
</tr>
<tr>
<td>9.3-1</td>
<td>Maritime Vessels and Logistics</td>
<td>9-22</td>
</tr>
<tr>
<td>10.1-1</td>
<td>Installation Vessels and Technologies Definitions</td>
<td>10-4</td>
</tr>
<tr>
<td>10.2-1</td>
<td>Backup and Optional Port Facilities</td>
<td>10-21</td>
</tr>
<tr>
<td>10.3-1</td>
<td>Vessel Types and Sizes</td>
<td>10-23</td>
</tr>
<tr>
<td>10.3-2</td>
<td>Foundation Vessels: Monopile, TP, and Scour Protection</td>
<td>10-26</td>
</tr>
<tr>
<td>10.3-3</td>
<td>Foundation and Harbor Logistics Steps</td>
<td>10-28</td>
</tr>
<tr>
<td>10.3-4</td>
<td>Foundation Installation Steps</td>
<td>10-30</td>
</tr>
<tr>
<td>10.3-5</td>
<td>Scour Protection T&I</td>
<td>10-32</td>
</tr>
<tr>
<td>10.3-6</td>
<td>ESP Vessels</td>
<td>10-33</td>
</tr>
<tr>
<td>Table Reference</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Table 10.3-7</td>
<td>ESP Topside Installation</td>
<td>10-34</td>
</tr>
<tr>
<td>Table 10.3-8</td>
<td>ESP Offshore Commissioning Steps</td>
<td>10-35</td>
</tr>
<tr>
<td>Table 10.3-9</td>
<td>Offshore Export Cable Vessels</td>
<td>10-36</td>
</tr>
<tr>
<td>Table 10.3-10</td>
<td>Inter-Array Cable Vessels</td>
<td>10-39</td>
</tr>
<tr>
<td>Table 10.3-11</td>
<td>WTG Vessels</td>
<td>10-41</td>
</tr>
<tr>
<td>Table 10.3-12</td>
<td>WTG Transport to the Pre-Assembly Harbor</td>
<td>10-43</td>
</tr>
<tr>
<td>Table 10.3-13</td>
<td>WTG Pre-Assembly Harbor Logistics</td>
<td>10-43</td>
</tr>
<tr>
<td>Table 10.3-14</td>
<td>WTG Transport to Site and Installation</td>
<td>10-45</td>
</tr>
<tr>
<td>Table 10.3-15</td>
<td>Jones Act Compliance Approach</td>
<td>10-50</td>
</tr>
<tr>
<td>Table 10.4-1</td>
<td>Parties Potentially Involved in Deployment of the Projects</td>
<td>10-52</td>
</tr>
<tr>
<td>Table 12.2-1</td>
<td>Status of Key Projects from Iberdrola Group’s Non-US Portfolio</td>
<td>12-8</td>
</tr>
<tr>
<td>Table 12.2-2</td>
<td>Project Partners and Consultants</td>
<td>12-10</td>
</tr>
<tr>
<td>Table 12.4-1</td>
<td>Avangrid Offshore Wind Project Experience</td>
<td>12-26</td>
</tr>
<tr>
<td>Table 12.4-2</td>
<td>Iberdrola Group Non-US Projects in Advanced Stages</td>
<td>12-26</td>
</tr>
<tr>
<td>Table 13.0-1</td>
<td>Total Economic Benefits to Massachusetts</td>
<td>13-4</td>
</tr>
<tr>
<td>Table 13.0-2</td>
<td>Key Commitments for Workforce, Supply Chain, and other Community and Environmental Investments</td>
<td>13-35</td>
</tr>
<tr>
<td>Table 13.1-1</td>
<td>Summary of Massachusetts Job Creation (FTE Job-Years)</td>
<td>13-40</td>
</tr>
<tr>
<td>Table 13.1-2</td>
<td>Regional Job Creation</td>
<td>13-41</td>
</tr>
<tr>
<td>Table 13.1-3</td>
<td>Development Job Examples</td>
<td>13-41</td>
</tr>
<tr>
<td>Table 13.1-4</td>
<td>Construction Job Examples</td>
<td>13-43</td>
</tr>
<tr>
<td>Table 13.1-5</td>
<td>Operations Job Examples</td>
<td>13-45</td>
</tr>
<tr>
<td>Table 13.3-1</td>
<td>Massachusetts Expenditure & Investment</td>
<td>13-51</td>
</tr>
<tr>
<td>Table 13.3-2</td>
<td>Regional Expenditure & Investment (millions)</td>
<td>13-52</td>
</tr>
<tr>
<td>Table 13.4-1</td>
<td>Key Economic Benefit Initiatives Contractual Commitments Status</td>
<td>13-60</td>
</tr>
<tr>
<td>Table 13.5-1</td>
<td>Direct Contract Impacts (NPV(^1) 2023$)</td>
<td>13-63</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Table 13.5-2</td>
<td>Indirect Market Benefits (NPV(^1) 2023$)</td>
<td>13-64</td>
</tr>
<tr>
<td>Table 13.5-3</td>
<td>Massachusetts Ratepayer Bill Impact</td>
<td>13-66</td>
</tr>
</tbody>
</table>

14-3
1. Certification, Project & Pricing Data

The Certification, Project and Pricing Data ("CPPD") document is a Microsoft Excel workbook that is provided on the website at www.MACleanEnergy.com.
2. Executive Summary

The bidder is required to provide an executive summary of the project proposal that includes a complete description of the proposed generation bid, the proposed contract term and pricing schedule, interconnection plan, the overall project schedule and other factors the bidder deems to be important. A table summarizing proposal(s) including details such as generation project location, interconnection location(s), capacity (MW), commercial operation date, pricing ($/MWh), etc. is encouraged.
3. Operational Parameters

New England Wind 1 and New England Wind 2 have been designed to reliably generate and deliver clean energy to the New England electrical grid. Avangrid is well-prepared to operate and maintain the Projects and will have several years of experience operating and maintaining Vineyard Wind 1 by the time New England Wind 1 and New England Wind 2 achieve commercial operation. Vineyard Wind 1, New England Wind 1, and New England Wind 2 will be located adjacent to one another and share a similar design, including a common offshore export cable corridor and landfall sites located in the Town of Barnstable. Such similarities will allow for highly relevant operational lessons learned to be shared and applied.

Key design components that will ensure reliable generation and delivery of energy from New England Wind 1 and New England Wind 2 include the following:

- Employing well-known, highly reliable, and commercially available technologies that reduce the risk of equipment failures of key components.
- An industry-leading operations and maintenance (O&M) plan based on regular and comprehensive scheduled maintenance combined with a preventative maintenance strategy. This strategy is informed by the approach for Vineyard Wind 1, which Avangrid has been selected to operate and maintain once the project achieves commercial operation later this year.
- The use of remote monitoring systems to ensure the longevity and reliability of equipment components over the course of the operational lives of the Projects.
- A logistics plan based on a service operation vessel that will maximize the time available for technicians to conduct maintenance and repairs, allow for safe operation in severe weather conditions, and ultimately ensure high reliability and a quick response to unscheduled outages.

In addition to the operational lessons learned from Vineyard Wind 1, New England Wind 1 and New England Wind 2 will also employ the significant experience gained from Avangrid’s global affiliates’ more than 4,900 MW of offshore wind capacity currently in operation or under construction.

3.1. Maintenance Outage Requirements

Specify partial and complete planned outage requirements in weeks or days for all generation facilities and associated facilities required for the delivery of energy from the generation facilities to the delivery point.

Also, list the number of months required for the cycle to repeat (e.g., list time interval of minor and major overhauls, and the duration of overhauls).

Maintenance outage requirements for the major offshore and onshore components of the Projects are shown in Table 3.1-1. These components include:

1 Vineyard Wind 1 is a 50/50 joint venture of Avangrid Renewables, LLC (Avangrid) and Copenhagen Infrastructure Partners P/S (CIP). Once commercial operation of Vineyard Wind 1 begins, Avangrid will assume responsibility for the O&M of the project, following an agreement reached with CIP for this purpose.
Wind turbine generators (WTGs);
- Inter-array cables;
- Offshore export cables;
- Electrical service platforms (ESPs); and
- Onshore substations.

Scheduled maintenance for the Projects is expected to occur during periods of low production to reduce the likelihood of impacts from any necessary outages. ISO New England (ISO-NE) will be informed of planned maintenance campaigns well in advance to minimize the system impacts of any outages, and Avangrid will be aligned with the availability and outage compliance requirements identified in the power purchase agreement(s) (PPAs).

Unscheduled maintenance, which includes unscheduled repairs and the replacement of damaged components, can be planned to a limited degree, but may take place at any time throughout the year. To avoid occurrences of unscheduled maintenance and ensure high production reliability, selected components will be designed with condition monitoring systems so potential faults can be addressed before unexpected failures occur, such as distributed temperature sensing (DTS) equipment on the export cables and ice formation sensors on the WTG blades.

The preventative maintenance measures described in this section will reduce the need for corrective intervention and support the optimal operation of the Projects.

Table 3.1-1 Outage Requirements

<table>
<thead>
<tr>
<th>Major Project Component</th>
<th>Approximate Yearly Outage Period Due to Scheduled Maintenance</th>
<th>Capacity Out of Service During Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May–September</td>
<td>October–April</td>
</tr>
<tr>
<td>WTGs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-array Cables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore Export Cables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onshore Substation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.1 Major Project Components

Maintenance outage requirements for main components of New England Wind 1 and New England Wind 2 are described herein.

3.1.1.1 WTGs

Once every 12 months, WTGs will undergo scheduled maintenance with a required outage. Such maintenance activities are likely to occur within the summer months to minimize the effect of weather-induced downtime and the resulting loss of productivity (i.e., boat access is prohibited by rough seas). Care will also be taken to schedule maintenance during off-peak times in the summer months by utilizing advanced weather modeling and historical data.

The WTGs not undergoing maintenance will remain online and operational, enabling New England Wind 1 and New England Wind 2 to continue meeting peak demand while maintenance activities are completed.

3.1.1.2 Inter-array Cables and Offshore Export Cables

Cables are inactive assets, and as such, do not need maintenance. They will have sensing equipment installed, such as a DTS system on the export cables, which will be monitored at the Offshore Control Center (OCC). More details on the OCC can be found in Section 11. Scheduled inspections will be carried out periodically using remotely operated underwater vehicles to verify cable condition and burial state. Avangrid will also perform routine checks to ensure termination points are secure without the need for an outage.

3.1.1.3 ESPs and Onshore Substations

Scheduled maintenance of the ESPs and onshore substations will occur once every 12 months, per the selected manufacturer’s recommendations. Scheduled maintenance will be coordinated with ISO-NE and, to the extent possible, will be scheduled outside the peak load months of December, January, and February. A full outage of the Offshore Wind Energy Generation facility will be required once every 12 months. This is necessary to conduct scheduled maintenance and inspection of the high voltage alternating current (HVAC) transmission system.

A longer outage may be required once every five years (60 months) to perform additional, in-depth scheduled maintenance and testing of the HVAC transmission system. Such in-depth maintenance could include high-voltage protection functional testing, switchgear tests, and/or detailed transformer inspections, and is necessary to ensure safe and reliable operation while maintaining asset integrity. Measures will be taken to optimize the timing of this work, such as aligning it with other outages (e.g., onshore substation outage), to reduce the overall production loss.
3.1.2 Preventative Maintenance

Preventative maintenance will be performed to reduce the need for corrective intervention. Avangrid and its global affiliates have employed preventative maintenance approaches that have proven successful on other offshore wind projects in Europe. For example, Iberdrola is leading an industry consortium of 12 recognized and experienced key players on the ROMEO project. This initiative, backed by the European Commission through the Horizon 2020 Program, intends to optimize operating costs, achieve maximum efficiency, and drive renewable energy production. The initiative is being rolled out in three locations: Teesside (UK), East Anglia ONE (UK), and Wikinger (Germany). Avangrid will employ any lessons learned from these approaches as well as experience gained operating Vineyard Wind 1 to support preventative maintenance efforts for the Projects.

Remote monitoring is a key element for preventative maintenance as it allows continuous assessment of the technical state of a project. The Projects will be monitored around the clock from a state-of-the-art OCC. The sophisticated OCC will monitor real-time data from condition monitoring sensors that will be continuously analyzed to enable Avangrid to predict potential issues or failures and respond quickly to minimize any impacts on production. The data gathered at the OCC via remote monitoring will also allow technicians to improve maintenance plans and identify potential future problems when conducting maintenance on WTGs. If an alarm is raised in the remote monitoring system, the technical teams will be notified immediately, and a plan of action will be created. Based on the type of notice, either a remote or an on-site intervention can be planned.

The two main systems available for remote monitoring of offshore wind projects are:

- **WTG Condition Monitoring**: WTG condition monitoring systems measure vibration and acceleration in specific WTG components, typically the main hub bearing, main shaft, gearbox (if applicable), generator, and tower. The vibrations and accelerations are measured and sent to a centralized computer system in the OCC, and when defined levels are exceeded, an alarm is issued. If necessary, the WTG will automatically initiate a forced shutdown until the root cause has been identified and mitigating actions have been completed.

- **Supervisory Control and Data Acquisition (SCADA)**: SCADA is a computer system that gathers and analyzes real-time data. The system connects individual WTGs, substations, and meteorological stations to a central computer system and gathers information such as active/reactive power (megawatts/megavolt-amperes reactive), voltage, temperature, pressure, and positions. Gathered data is continuously analyzed by software tools and trained technicians at the OCC to establish monitoring routines and evaluate project components for early indications of wear and tear or potential breakdown. In the event a breakdown occurs, SCADA data can be analyzed to identify its root cause.

Both remote monitoring systems are managed by local experts at the OCC and in shared monitoring centers located at Avangrid technical centers in the US and Europe.

2 ROMEO stands for Reliable OM decision tools and strategies for high levelized cost of electricity reduction in offshore wind. More information can be found at https://www.romeoproject.eu/the-project/.
3.2. **Operating Constraints**

Specify all the expected operating constraints and operational restrictions for the project (e.g., limits on the number of hours a unit may be operated per year or unit of time).

Operating constraints for New England Wind 1 and New England Wind 2 are largely determined by the technical parameters of the Offshore Wind Energy Generation facility and transmission system components. Importantly, offshore WTGs and related structures are designed to withstand the harsh offshore climate and ensure a long operational life. Avangrid has also taken steps to maximize the operational availability of the Projects with sufficient buffer using a 30-year hindcast of metocean conditions based on historic data. New England Wind 1 and New England Wind 2 have been designed to operate under the most severe wind and wave conditions modeled for a 10,000-year storm event and consistent with expected future conditions due to climate change. The Projects have followed all recognized design standards for offshore WTGs, foundations, and cables.

3.2.1 Weather-Related Conditions

Operational constraints for the WTGs are dictated by temperature, wind speed, and sea state. These operational constraints have been accounted for in the WTG availability calculation.

3.2.1.1 Temperature

During normal operations, WTGs can withstand one-hour mean temperatures between approximately 21 to 80 degrees Fahrenheit (°F). Outside of this range, the WTGs will take various measures to preserve the system and potentially ramp down power production, depending on the WTG model and the manufacturer’s chosen approach. Once more extreme temperatures are reached—in the range of 90 to 100 °F (extreme heat) and 0 to -10 °F (extreme cold)—the WTGs will stop operating altogether, in accordance with the normal standards for offshore wind WTGs as stipulated in International Electrotechnical Commission Standard 61400-3. It should be noted that temperatures in the offshore environment are generally more stable than onshore due to the slower heating of water as compared to land; these cold and hot extremes are rare at sea. The WTG temperature boundaries have been assessed with historic offshore weather data in the availability calculation, and these losses have been accounted for in the annual production estimates for the Projects.

3.2.1.2 Wind Speed

During a hurricane, the WTG will remain idle but will yaw the rotor perpendicular to the wind and feather the WTG blades to allow for minimum loads on the WTG structure.

3.2.1.3 Sea States

Avangrid will monitor weather forecasts and real-time data on wave conditions to control the safe transfer of personnel between a vessel and a WTG. The safest technology—a service operation vessel
with a walk-to-work system—will be deployed to enable smooth transfers in wave heights of up to eight feet. The weather limits for safe transfer have been assessed with historic offshore weather data in the availability calculation and have been accounted for in the annual production estimates for the Projects.

3.3. System Reliability, Safety, and Security

Describe how the proposal would provide enhanced electricity reliability, system safety and energy security to Massachusetts, including its impact on transmission constraints.

3.3.1 Electricity Reliability

The injection of emission-free, reliable offshore wind power into the New England electricity grid provided by New England Wind 1 and New England Wind 2 will enhance the overall reliability of the New England electricity system by enhancing resource adequacy, diversifying generator fuel mix, and reducing fuel risk. The Projects will also support regional system security by adding generation capacity that is resilient to changes in market structures, complementing the generation profiles of distributed solar and onshore wind resources, injecting power in the transmission-constrained Southeast Massachusetts (SEMA) load zone. The Projects can stabilize prices in the peak winter months and reduce the region’s dependence on imported natural gas.³

3.3.1.1 Addressing Resource Adequacy

The retirement of coal, oil, and nuclear power generation facilities has increased the region’s reliance on natural gas generation resources and strained the pipeline infrastructure that delivers fuel into the region. Heavy reliance on natural gas puts the reliability of the New England electricity system at risk, particularly in the winter months during extreme weather events. It also increases price volatility in wholesale markets and increases costs to ratepayers. In addition to the recent retirements of Brayton Point Power Station (Somerset, Massachusetts) in 2017 and Pilgrim Nuclear Power Station (Plymouth, Massachusetts) in 2019, ISO-NE estimates that another 5,000 MW of oil- and coal-fired generation capacity may be at risk of retirement in the coming years.⁴

The expected retirement of existing capacity further exacerbates the twin threats of limited fuel diversity and overdependency on natural gas. In periods of extremely cold weather, natural gas supply constraints have led to shortages in the electricity sector and resulted in oil-fired generation becoming the price-setting fuel in the wholesale electricity market. Oil-fired generation is significantly more expensive and polluting than natural gas-fired generation.

A key benefit of offshore wind is that it does not require fuel to operate; thus, it is not vulnerable to supply constraints or delivery failures that can interrupt supply or create grid reliability issues. Furthermore, offshore wind energy projects produce the most power in the winter months when demand is highest. The two Projects will therefore deliver energy at stable prices, and at a high-capacity factor that directly mitigates the factors that drive power prices and pollution higher during

⁴ https://www.iso-ne.com/about/what-we-do/in-depth/power-plant-retirements
these months. This will bolster the region’s resource adequacy, protect ratepayers from electricity price spikes, and avoid emissions that result from oil-fired generation during extreme weather events.

See Section 13 for additional information regarding energy market benefits modeled by

3.3.1.2 Resilient to Changes in Market Structures

The PPA(s) awarded under this solicitation will provide long-term revenue certainty to the Project(s). This certainty insulates the Projects from changes in existing market structures, providing an additional form of resource resiliency. Generation from New England Wind 1 and New England Wind 2 will therefore remain firmly in place over the PPA term. This will further mitigate the potential impacts of generation capacity retirements in the region and allow for better long-term system resource adequacy planning by ISO-NE.

3.3.1.3 Reducing the Risk of Power Loss

New England Wind 1 and New England Wind 2 will deliver power to the New England electricity grid through an underground transmission system, which increases the resiliency of the Projects relative to other generation assets that include aboveground cabling. New England Wind 1 will deliver power to shore via two offshore HVAC export cables and New England Wind 2 will deliver power to shore using three HVAC export cables. HVAC transmission systems for offshore wind are proven and highly reliable, as further described in Section 6 and Section 8.

3.3.2 System Safety

Avangrid has developed a safety design architecture to ensure the reliable and redundant operation of New England Wind 1 and New England Wind 2.

3.3.2.1 Physical Security and Cybersecurity

Avangrid places a strong emphasis on physical security and cybersecurity in full alignment with North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) standards and global best management practices, guided by directives from Avangrid’s dedicated corporate security teams. Once PPAs are secured for New England Wind 1 and New England Wind 2, Avangrid plans to supplement its existing team of specialized personnel dedicated to ensuring cybersecurity and NERC compliance with additional individuals to further safeguard the security and compliance of the Projects.

Avangrid’s commitment to safety and cybersecurity is also evidenced by its procurement and vendor selection processes, in which the cybersecurity practices of potential suppliers are carefully analyzed as part of the evaluation process. Cybersecurity practices and metrics serve as part of the selection criterion and suppliers’ commitments relative to cybersecurity are later formalized in all contracts through the inclusion of a comprehensive cybersecurity clause, underscoring the importance of the secure practices throughout the life cycles of the Projects.
Additionally, Avangrid employs cutting-edge and resilient solutions within its network supervision framework. Avangrid's networking leverages proven and trusted technologies and is continuously evaluated for further upgrades as new threats arise.

3.3.2.2 Electrical and Control Systems Security

New England Wind 1 and New England Wind 2 have been rigorously designed to ensure system safety across both plants. Avangrid utilizes state-of-the-art technologies for monitoring electrical and control systems for network anomalies and vulnerabilities. In addition to automated monitoring, Avangrid's physical and cybersecurity teams employ their expertise and contextualize data to ensure a nuanced understanding of the evolving cybersecurity landscape. At all physical locations, Avangrid ensures compliance with NERC CIP requirements relative to physical personnel access control and supervision and conducts regular security audits and assessments to assure effectiveness of Avangrid's practices.

3.3.2.3 Protection, Control, and Metering (PCM)

PCM systems utilized for the Projects will implement fully redundant primary and backup systems. Redundant design increases the dependability of an overall protection system as the failure of one protection system would not affect the operation of the other. The protection system is designed to meet the specific requirements of power systems elements, ensuring fault isolation within a predefined clearing time. This is essential for preserving system stability and meeting the load-stringent services requirements of offshore wind projects. PCM philosophy requires that a single failure of the system shall not prevent automatic clearance of the fault in any part of the electrical system.

The PCM systems for the Projects are engineered to embody the highest standards of reliability and resilience and include fully redundant primary and backup systems. In the event of a failure, the backup/redundant systems take over seamlessly in order to maintain operational integrity. Additionally, fail-safe mechanisms are required to ensure that, in event of fault or failure, the PCM system defaults to safe state. PCM systems are also deployed under the strict cybersecurity protocols described in this section under NERC CIP compliances, including firewalls, network configuration optimization, regular security audits and continuous monitoring. This ensures the integrity and confidentiality of sensitive data.

The PCM systems are equipped with remote monitoring capabilities, enabling real-time surveillance of performance, and allowing for identification of anomalies or deviations from normal operations. Remote diagnostics facilitate quick response and preventive actions, minimizing risks. Integrated emergency shutdown systems are accounted for in order to shut down critical components rapidly and safely in the event of imminent threat or malfunction.

The PCM design includes corrosion resistance and protective panels and enclosures to withstand hard environmental conditions associated with coastal or offshore locations.

Personnel are extensively trained in emergency responses protocols specific to PCM systems, including simulated scenarios to ensure preparedness in case of emergencies.
3.3.2.4 Communications and SCADA Security

Numerous measures aimed at ensuring the robust performance, reliability, and security of SCADA and telecommunications infrastructure will be implemented for the Projects. SCADA and telecommunications systems are designed with redundant communication connections to ensure data flow.

Further, encryption and multifactor authentication mechanisms are integrated into the telecommunications and SCADA systems to protect data integrity, prevent unauthorized access, and thwart cyber threats and malicious activities.

Routine audits and vulnerability assessments are conducted to identify potential weaknesses and proactive measures are taken to mitigate vulnerabilities and adhere to the latest cybersecurity standards.

Like the PCM system, the telecommunication and SCADA elements incorporate remote monitoring capabilities, allowing for quick detection of anomalies and ensuring prompt responses to maintain systems integrity. Lastly, recognizing the offshore environments challenges, the telecommunications and SCADA systems are selected for specific harsh environment ratings, as are the panels and enclosures in which they are installed.

3.3.3 Energy Security

Offshore wind will enhance New England’s energy security by diversifying the fuel mix, especially during the extended periods of cold weather when New England’s gas supply can be constrained and demands for heating and power generation peak.

The production profiles of the Projects are positively correlated with the region’s demand profile and will generate significant power in the winter months when natural gas is in high demand and the region’s infrastructure is highly stressed. The generation profile will also differ from that of distributed solar and onshore wind resources on a daily and seasonal basis, complementing these intermittent resources’ contributions to a decarbonized electricity system.

Additionally, the Projects will inject high-capacity factor power into the SEMA load zone, which is close to Greater Boston, New England’s largest load center. The proximity of the grid interconnection to a large load center also minimizes associated line losses on the grid transmission system.
3.4. Moderation of System Peak Load

Describe how the proposal would contribute to moderating system peak load requirements and provide the following information:

i) Estimated average output for each summer period (June-September) from 3:00 - 7:00 pm
ii) Estimated average output for each winter period (October-May) from 4:00 – 9:00 pm.

The energy outputs and generation profiles of New England Wind 1 and New England Wind 2 will moderate system peak load requirements by delivering a substantial amount of energy production during seasonal reliability hours, as defined in the Forward Capacity Market pursuant to the applicable ISO-NE tariff.

Power and heating sector demand for natural gas is at its highest during this peak production period, and constrained pipeline capacity often results in high electricity prices, as previously discussed. The Projects will alleviate power sector demand for natural gas during these peak periods and reduce electricity price volatility and mitigate price spikes. The Projects will also directly contribute to the seasonal supply of peak capacity, as further described in Section 4, given that the daily peak of the production from New England Wind 1 and New England Wind 2 aligns well with daily peak load hours in the summer and winter months.

Finally, the Projects will play a role in moderating peak load requirements by interconnecting to the electricity grid in West Barnstable. The West Barnstable Substation, which will be the common point of interconnection for both Projects, is at the edge of the region’s 345-kilovolt system, so the Projects will reduce energy losses from centralized generation units along long transmission lines.

3.4.1 Estimated Average Output

Table 3.4-1
Table 3.4-1

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Energy Resource Plan

The wind resource and energy yield assessments for New England Wind 1 and New England Wind 2 are based on site-specific offshore wind data measured on location using joint venture project Vineyard Wind 1’s Floating Light Detection and Ranging (FLiDAR) system (FLS), which was deployed for a two-year period between May 2018 and June 2020. The system was deployed for a two-year period data from the currently deployed FLiDAR in the vicinity of the New England Wind FLS (Figure 4.1-1), deployed in April 2023. This site-specific data, combined with trusted mesoscale modeling techniques from onshore and nearshore data sources, provides the most robust dataset ever used to assess an offshore wind project in the US. Using the wind speed data collected from two FLiDAR measurement campaigns, in combination with regional measurements and a high-resolution mesoscale wind model simulation, a robust wind resource assessment for Lease Area OCS-A 0534 can readily be performed. Overall, the duration and quality of the available wind data are sufficient to provide an energy resource plan with minimal uncertainties. From the experience of developing Vineyard Wind 1, Avangrid is highly confident in the annual energy production estimates included in this section as well as the ability to secure financing for the Projects on this basis.

Figure 4.1-1 New England Wind FLiDAR Buoy
4.1. Wind Resource Details

For Eligible Facilities, the bidder is required to provide an energy resource plan and a production/delivery profile for its proposed project, including supporting documentation. The energy resource and profile information should be consistent with the type of technology/resource option proposed and the term proposed. Bidders should respond to all information requests which are relevant to the bid in a timely manner.

All Projects:

- Provide a summary of all collected wind data for the proposed site. Identify when and how (e.g. meteorological mast or LiDAR – for “Light Detection and Ranging”) the data was collected and by whom.

- Indicate where the data was collected and its proximity to the proposed facility site. Include an identification of the location and height for the anemometers and/or “range gate” heights for sensing by LiDAR that were used to arrive at an assessment of the site generation capability.

- Describe any additional wind data collection efforts that are planned or ongoing. Please Provide:

 1. at least one year of hourly wind resource data. Real Data collected from the site is preferred, though projected data is permissible. Methodology must also be included.

 2. a wind resource assessment report for the proposed facility from a qualified unaffiliated third-party wind resource assessment firm. Include an analysis of the available wind data which addresses the relationship between wind conditions and electrical output. Provide a projection of net annual energy production, including projections of average net hourly energy production, based on the wind resource data (hourly 8760 data profile and a 12 x 24 energy projection) at both P50 and P90 levels.

- Provide a site-adjusted power curve. Each curve should list the elevation, temperature and air density used.

- Identify the assumptions for losses in the calculation of projected annual energy production, including each element in the calculation of losses.

4.1.1 Wind Data Collection Summary

Avangrid has completed three comprehensive wind resource assessments to-date—one each in 2021, 2023, and 2024. This updated assessment, provided as Attachment 4.1-1, builds on site-specific FLiDAR measurements and previous findings for the projects in Lease Areas OCS-A 0501 and OCS-A 0534. The final report includes an updated wind resource assessment utilizing the new FLiDAR measurements from the ongoing measurement campaign. The key datasets used for the assessment are summarized in Table 4.1-1.
Table 4.1-1 Primary Sources Used to Assess Wind Conditions

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Collection Source Location (Latitude; Longitude)</th>
<th>Timespan</th>
<th>Description & Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite Field Measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vineyard Wind FLS</td>
<td>[41.073; -70.483]</td>
<td>2018-05-23 to 2020-05-12</td>
<td>10-minute measurements at 13, 98, 131, 197, 262, 328, 394, 459, 525, 590, 656, 787 feet (fMSL)</td>
</tr>
<tr>
<td></td>
<td>Distance to Offshore Wind Energy Generation site center: 17 miles (mi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New England Wind FLS</td>
<td>[40.733; -70.741]</td>
<td>2023-04-10 to 2024-04-10 (scheduled)</td>
<td>10-minute measurements at 10, 39, 131, 262, 328, 394, 459, 525, 590, 656, 820, 984 fMSL</td>
</tr>
<tr>
<td></td>
<td>Distance to Offshore Wind Energy Generation site center: 10 mi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoscale Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vortex SERIES</td>
<td>[41.073; -70.483]</td>
<td>2000-01-01 to 2024-01-01</td>
<td>Three 1-hour mesoscale time series computed at the Offshore Wind Energy Generation site, using ERA-5, CFSR, and MERRA2 as input</td>
</tr>
<tr>
<td>Vineyard Wind VORTEX</td>
<td>Approximate distance to Offshore Wind Energy Generation facility site center: 10 mi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vortex SERIES</td>
<td>[41.073; -70.483]</td>
<td>2003-01-01 to 2024-01-01</td>
<td>Three 1-hour mesoscale time series computed at the Offshore Wind Energy Generation site, using ERA-5, CFSR, and MERRA2 as input</td>
</tr>
<tr>
<td>New England Wind VORTEX</td>
<td>Approximate distance to Offshore Wind Energy Generation facility site center: 10 mi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplemental Regional Field Measurement Datasets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHOI ASIT(^1) Tower and LiDAR</td>
<td>[41.000; -70.000]</td>
<td>2016-11-30 to 2023-10-04</td>
<td>10-minute measurements at 88, 174, 197, 262, 295, 328, 361, 394, 459, 525, 590, 656 fMSL</td>
</tr>
<tr>
<td></td>
<td>Distance to Offshore Wind Energy Generation site center: 38 mi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nantucket Wind Test Profiler</td>
<td>[41.245; -70.114]</td>
<td>2021-10-11 to 2022-11-10</td>
<td>10-minute measurements at 141, 174, 197, 262, 295, 328, 361, 394, 459, 525, 590, 656 fMSL</td>
</tr>
<tr>
<td></td>
<td>Distance to Offshore Wind Energy Generation site center: 40 mi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\) Woods Hole Oceanographic Institute Air-Sea Interaction Tower.

Between May 2018 and May 2020, Vineyard Wind 1 completed a two-year deployment of a FLiDAR in Lease Area OCS-A 0501, which formerly encompassed current Lease Areas OCS-A 0501 and OCS-A.
The specific location of the FLiDAR yielded a dataset that was fully applicable for use in mesoscale modeling for the entirety of Lease Areas OCS-A 0501 and OCS-A 0534 without the need for scaling methods. The two-year onsite wind measurement data provide a solid basis for energy production estimates.

In mid-April 2023, a FLiDAR was deployed immediately south of Lease Area OCS-A 0534, and Avangrid has been purchasing this additional data since then. The data collected from this FLiDAR, which is scheduled to be deployed for one full year (through mid-April 2024) will be used to further refine the energy production estimates of the Projects and reduce the already limited uncertainty.

The primary data sources and methods used in the wind resource and energy production estimates are the following:

- Two years of measured FLiDAR wind data from the Vineyard Wind FLS collected by Fugro predefined measurement heights of 30, 40, 60, 80, 100, 120, 140, 160, 180, 200, 240 meters (m) above Mean Sea Level (mMSL) using the onboard LiDAR, as well as near the ocean surface with a sonic anemometer; and

- Seven months of measured FLiDAR wind data from the New England Wind FLS collected by EOLOS with predefined measurement heights of 12, 40, 80, 100, 120, 140, 160, 180, 200, 250, 300 m above mMSL using the onboard LiDAR, as well as near the ocean surface with a sonic anemometer.

Additional regional datasets used for overall wind resource assessment include:

- Vertical profiling LiDAR with predefined measurement heights of 53, 60, 80, 90, 100, 110, 120, 140, 160, 180, 200 mMSL and met mast height of 27 mMSL at the Woods Hole Oceanographic Institution (WHOI) Air-Sea Interaction Tower south of Martha’s Vineyard, with data collected by WHOI;

- Vertical profiling LiDAR with predefined measurement heights of 43, 53, 60, 80, 90, 100, 110, 120, 140, 160, 180, 200 mMSL on Nantucket Island, with data collected by WHOI; and

- Long-term (23 years) Vortex mesoscale time series (SERIES), computed at the Vineyard Wind FLS and (20 years) at the New England Wind FLS, using the Climate Forecast System Reanalysis (CFSR), the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2), and the European Centre for Medium-Range Weather Forecasts (ERA5) Reanalysis datasets as inputs for long-term correction.

Figure 4.1-2 illustrates the measurement locations of the wind datasets used in Avangrid’s analyses as well as the study locations of the extensive wind assessments and production estimates carried for previous site characterization campaigns.

1 Lease Area OCS-A 0534 was part of Lease Area OCS-A 0501, which was segregated into two lease areas by the Bureau of Ocean Energy Management in June 2021. Lease Area OCS-A 0501 is the location for the Vineyard Wind 1 project. Lease Area OCS-A 0534 is the location for the Projects.
Figure 4.1-2 Measurement and Study Locations of Primary Data Sources

Figure 4.1-3 illustrates the time spans covered by each time series of measurement points from the locations shown in Figure 4.1-2.

Figure 4.1-3 Overview of Time Spans for the Sources in Figure 4.1-2
Full detail on the datasets utilized, including descriptions of the individual measurement stations and mesoscale data, is provided in the wind resource assessment report (Attachment 4.1-1). Detailed information on the Vineyard Wind FLS data collection campaign and data quality assurance/quality control methodology is provided in Attachment 4.1-2, Attachment 4.1-3, Attachment 4.1-4, and Attachment 4.1-5. Raw data collected during the deployment is provided in Attachment 4.1-6. Detailed information on the New England Wind FLS data collection campaign is included in Attachment 4.1-7 and Attachment 4.1-8. Raw data collected during the deployment is provided in Attachment 4.1-9. This information was then filtered to perform the assessments in Attachment 4.1-1.

4.1.2 Wind Resource Assessment

Avangrid with developing a wind resource assessment report and a time-series of representative hourly wind resource for the Projects within Lease Area OCS-A 0534. The wind resource assessment report for both Projects is provided as Attachment 4.1-1.

4.1.2.1 Methodology

The wind resource assessment report includes a detailed description of the methodology used to produce the assessments with the data sources included in Table 4.1-1. The report is therefore based on several datasets and includes both direct measurements (FLiDAR) and models (reanalysis and mesoscale models).

After processing the initial measurements and models, performed the following steps to produce the final report:

- analysis of the observed wind climates;
- long-term correction;
- spatial extrapolation; and
- derivation of the final wind climate.

The wind resource assessment has been further validated by internal wind assessments performed by Avangrid’s wind assessment team, which is supporting an offshore wind development portfolio that includes more than 4,900 MW of offshore wind capacity in operation, including the New England Wind 1 and New England Wind 2 Projects and Vineyard Wind 1. Confirmation of the wind resource assessment by the Avangrid team provides additional confidence in their findings.

4.1.2.2 Summary of Results
These wind climates are spatially extrapolated across the Offshore Wind Energy Generation site in Lease Area OCS-A 0534 by using the mesoscale wind models [Attachment 4.1-10] and the National Renewable Energy Lab's Wind Integration National Dataset (WIND) Toolkit, as summarized below.

This wind resource assessment confirms a wind speed pickup from both the WHOI ASIT LiDAR and the Nantucket Wind Test Profiler to the center of the Offshore Wind Energy Generation site and substantiates the assumptions and final figures of the wind energy resource assessment.

4.1.3 Net Annual Energy Production
Table 4.1-2 Projected Gross and Net Annual Production (p50 and p90)

<table>
<thead>
<tr>
<th></th>
<th>Gross</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1-3 New England Wind 1 Average Seasonal and Diurnal Net Energy Production (p50) in GWh

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4-9
<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1-4 New England Wind 1 Seasonal and Diurnal Net Energy Production (p90) in GWh
<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>30</td>
<td>25</td>
<td>32</td>
<td>28</td>
<td>31</td>
<td>29</td>
<td>33</td>
<td>27</td>
<td>30</td>
<td>25</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>2024</td>
<td>30</td>
<td>25</td>
<td>32</td>
<td>28</td>
<td>31</td>
<td>29</td>
<td>33</td>
<td>27</td>
<td>30</td>
<td>25</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>2025</td>
<td>30</td>
<td>25</td>
<td>32</td>
<td>28</td>
<td>31</td>
<td>29</td>
<td>33</td>
<td>27</td>
<td>30</td>
<td>25</td>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 4.1-5 New England Wind 2 Average Seasonal and Diurnal Net Energy Production (p50) in GWh
<table>
<thead>
<tr>
<th>Season/Time</th>
<th>GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
</tbody>
</table>
4.1.4 Power Curve
4.1.5 Loss Assumptions

4.2. Offshore Wind Energy Generation Delivery Plan

Please provide an energy delivery plan and a production/delivery profile for the proposed project, including supporting documentation. The energy delivery plan and production/delivery profile must provide the expected Offshore Wind Energy Generation to be delivered into the ISO-NE market settlement system and permit the Evaluation Team to determine the reasonableness of the projections for purposes of Sections 2.2.1.3 Eligible Bids and 2.2.1.8 Capacity Requirements, and 2.2.1.9 Interconnection and Delivery Requirements of the RFP. Such information should be consistent with the energy resource plan and production/delivery profile provided above and also considering any and all constraints to delivery into ISO-NE.

The layout of the Projects will continue to be refined and optimized throughout the development phase but maintain the overall 1 x 1 nautical mile (NM) spacing that Avangrid has committed to for its New England projects. More specifically, Avangrid has agreed to micro-siting allowances on cardinal points to a maximum of 460 ft in cardinal directions (N, S, E, W), and 325 ft on intercardinal directions so that a minimum of 0.6 NM between any two structures is maintained.
4.2.1 Forward Capacity Market

Table 4.2-1 Estimated Output for Peak Periods for New England Wind 1

Table 4.2-2 Estimated Output for Peak Periods for New England Wind 2

4.2.2 Energy Output and Generation Profile

The energy output and generation profiles of the Projects will moderate system peak load requirements by delivering a substantial amount of energy during seasonal reliability hours as defined
in the FCM pursuant to the applicable ISO-NE tariff. **Figure 4.2-2** and **Figure 4.2-3** illustrate production on a monthly basis for New England Wind 1 and New England Wind 2, respectively, and shows that the majority of the highest overall production will occur during the seasonal winter peak period from October to May.

Power and heating sector demand for natural gas is at its highest during this period, and constrained pipeline capacity often results in volatile and higher electricity prices. As the production of the Projects is greatest during this period, it has the potential to alleviate power sector demand for natural gas and thereby reduce energy price volatility and dramatic price spikes by delivering reliable, fixed price electricity to the grid.
The Projects will also directly contribute to the seasonal supply of peak hourly capacity. The daily variation in the net hourly capacity factor during the summer peak period from June to September, as well during the winter peak period from October to May are depicted for New England Wind 1 in Figure 4.2-4 and Figure 4.2-5 and for New England Wind 2 in Figure 4.2-6 and 4.2-7. These figures show how the daily peak production of the Projects aligns well with the daily peak load hours in the summer and winter months.
Avangrid will act as the Lead Market Participant and Designated Entity performing all bidding, scheduling, and settlement functions with ISO-NE for the Projects for both energy and renewable energy certificates (RECs). All settlements will use the ISO-NE Settlement Market System. As detailed in Section 12, Avangrid is an experienced operator in the New England region.

As detailed in Section 6, Avangrid has conducted extensive assessments of the interconnection requirements for the New England transmission system based on all the applicable standards established by the North American Electric Reliability Council, Northeast Power Coordinating Council, and ISO-NE. The results of Avangrid’s investigation indicate that upon completion of the requisite studies by ISO-NE, the Projects will meet both the Network Capability Interconnect Standards (NCIS) and the Capacity Capability Interconnection Standards (CCIS) established by ISO-NE.

At the start of commercial operation, the Projects will deliver energy within the terms of any approved PPAs and consistent with ISO-NE rules and procedures.

4.3. REC/Environmental Attribute Delivery Plan

Please provide documentation and information demonstrating that the project will Deliver GIS Certificates representing those RECs and any other Environmental Attributes, as applicable. Please describe whether transfer of all GIS Certificates is authorized under the current ISO-NE GIS rules and protocols, or if a rule or protocol change is required. To the extent such change is required, please provide details regarding the proposal and the process for implementing the change.

The Projects are new generation resources within the ISO-NE Control Area and will generate electricity using wind energy as its fuel source. Projects located within the ISO-NE Control Area and operating after December 31, 1997, may qualify as a “New Class I Renewable Portfolio Standard Eligible Resource” as defined under M.G.L. c. 25A § 11F and 225 C.M.R. 14.00. Avangrid will provide documentation demonstrating such qualification at the appropriate time as per the regulations. The interconnection for the Projects is currently being studied per the ISO-NE NCIS and the CCIS and will be designed with the interconnection capability and capacity necessary to fully deliver the output capabilities of the Projects in accordance with all procedures established by ISO-NE. Avangrid’s investigations indicate that the Projects will meet both the NCIS and CCIS. As such, the Projects will be included in the ISO-NE’s Settlement Market System and will qualify for creation of certificates under Rule 2.1 and other pertinent portions of the New England Power Pool (NEPOOL) Generation Information System (GIS) Operating Rules Effective 1-1-18. Confirmation of Avangrid’s NEPOOL membership is provided as Attachment 4.3-1. Additional documentation can be provided upon request following Avangrid’s inclusion in the Settlement Market System.

Avangrid hereby certifies that it will utilize the NEPOOL GIS as the appropriate tracking system to ensure a unit-specific accounting of the delivery of unit-specific and unit contingent energy and RECs. Avangrid is prepared to take commercially reasonable measures to ensure that no other load-serving entity, province, state, or commonwealth will claim or count the environmental attributes of energy generated by the Projects, except only to the extent those entities have a legitimate claim to title and take delivery of NEPOOL GIS RECs associated with the energy generated by the Projects.
4.4. Additional Long-Term Contracts with Third Parties

Please describe any commitments to enter into long-term contracts to purchase offshore wind energy with businesses, nonprofit organizations, a municipality or group of municipalities with an approved municipal load aggregation plan pursuant to section 134 of chapter 164 of the General Laws or other government entities directly or through an aggregation pursuant to section 137 of said chapter 164.

Please describe the status of the commitments with any offtakers, including any executed agreements, provided that such agreements may be contingent on the project being selected for contracting under this RFP.
4.5. Energy Storage System Operations

Include a Project Summary

Describe the operation of the proposed Energy Storage System

Describe the location of the Energy Storage System, the anticipated interconnection point, and the value of the relative proximity of the system to the Offshore Wind Energy Generation facility, including any decreased risk of curtailment and/or deferred investment for the Offshore Wind Energy Generation Facility

Describe the proposed technology and equipment manufacturer by name and model (include inverter characteristics if applicable).

Describe the viability and operational reliability of the proposed technology and track record of the manufacturer. Provide examples of similar applications of the same size and scope.

Please provide an energy delivery plan and production/delivery profile for the proposed project, including supporting documentation.

Describe the operation of the Energy Storage System as it relates to ISO-NE’s implementation of FERC Order No. 841, including whether the proposed Energy Storage System will be classified as a Binary Storage Facility or Continuous Storage Facility, the designation of the ISO-NE Markets that the Energy Storage System would participate in, and the plan to operate in multiple ISO-NE Markets.

Please list all anticipated revenue streams associated with the Energy Storage System

Please describe any additional benefits the Energy Storage System may provide not captured in the benefits provided through the operational commitments, including but not limited to, (SEE RFP).
5. Financial/Legal

Avangrid (the Company) has the experience, qualifications, and competencies required to develop commercial-scale offshore wind projects. This section details the financial plans for New England Wind 1 and New England Wind 2 and outlines Avangrid’s experience and organizational structure, as well as legal matters related to the Company, its projects, and its affiliates.

To deliver New England Wind 1 and New England Wind 2, Avangrid will leverage its experience executing a financing plan for projects of similar size and scope, Vineyard Wind 1. Vineyard Wind 1, the nation’s first commercial-scale offshore wind project, achieved financial close (FC) in 2021, becoming the first project of such scale in the US to do so. Working with international and US-based banks, Vineyard Wind 1 raised approximately $2.3 billion of senior debt to finance the construction of the project, which is projected to generate affordable, renewable energy for over 400,000 homes and business across the Commonwealth while reducing carbon emissions by over 1.6 million tons per year. Vineyard Wind 1 delivered first power in 2024 and is working diligently to complete construction, delivering on Avangrid’s promise to provide offshore wind energy to Massachusetts to meet its 2030 climate goals. Avangrid’s invaluable experience serving as the developer, financier, and operator of the first commercial-scale US offshore wind project drives the success and viability of New England Wind 1 and New England Wind 2, which will deliver offshore wind energy to New England in 2029 and 2030, respectively, helping the Commonwealth achieve its climate goals.

In addition to its experience developing Vineyard Wind 1, Avangrid will leverage the experience and expertise of the Iberdrola Group, a global leader in offshore wind and renewable power development, to develop and finance the Projects. Further information demonstrating Avangrid’s financial strength, organization, and financing experience is provided herein.

5.1. Long-Term Contracts for Financing

Submit information and documentation that demonstrates that long term contracts resulting from this RFP Process would either permit the bidder to finance its proposal that would otherwise not be financeable or assist the bidder in obtaining financing of its proposal.

Avangrid’s commitment to providing the equity investments needed to finance the Projects is predicated on executing long-term contracts for the energy and renewable energy certificates (RECs) they will generate, which will provide the long-term revenue certainty needed to take Final Investment Decision (FID) on the Projects and reach FC with banks. The requirement to have long-term contracts in place is consistent with the approach taken for Avangrid’s existing projects, as well as the Company’s prior business practices when financing other large generation projects in the US.

Long-term contracts in the form of power purchase agreements (PPAs) awarded through this Request for Proposal (RFP) process will allow Avangrid to obtain third-party financing by guaranteeing a purchaser of the energy and RECs generated by the Projects. PPAs will also provide greater price certainty for the energy and environmental attributes over the term of the agreements, eliminating one
of the largest economic uncertainties in estimating future revenues and thus lowering the risks to investors, lenders, and ratepayers. Commercial-scale renewable energy development on a non-contracted (merchant) basis can be extremely challenging and, in the view of the Company, is not possible for projects of the scale and capital intensity of New England Wind 1 and New England Wind 2. The banks and financial advisors consulting with Avangrid have confirmed the importance of long-term contracts to secure financing for the Projects.

5.2. Business Entity Structure

Provide a description of the business entity structure of the bidder’s organization from a financial and legal perspective, including all general and limited partners, officers, directors, managers, members and shareholders, involvement of any subsidiaries supporting the project, and the providers of equity and debt during project development. Provide an organization chart showing the relationship between the equity and debt participants and an explanation of the relationships. For jointly owned facilities, identify all owners and their respective interests, and document the Bidder’s right to submit a binding proposal.

The bidder, Avangrid Renewables, LLC, is an indirect, wholly owned subsidiary of Avangrid, Inc. Avangrid, Inc. is headquartered in Orange, Connecticut and has approximately $44 billion in assets and operations in 24 states concentrated in two primary lines of business, Avangrid Renewables and Avangrid Networks.

Avangrid, Inc. is a part of the Iberdrola Group, which is led by Iberdrola, S.A. (Iberdrola), headquartered in Bilbao, Spain. Iberdrola directly owns 81.6% of the outstanding shares in Avangrid, Inc. Iberdrola is an energy pioneer with one of the largest renewable asset bases of any company in the world, with over 41 gigawatts (GW) of installed renewable energy capacity across a dozen countries. Iberdrola has over 170 years of experience and more than 42,000 employees across nearly 40 countries. The environment and sustainable development remain at the center of its global strategy. No single entity holds or controls 10% or more of the voting or economic interests in Iberdrola.

Avangrid Renewables, LLC is an Oregon Limited Liability Company and a direct subsidiary of Avangrid Renewables Holdings, Inc., which is in turn a wholly owned direct subsidiary of Avangrid, Inc. Pioneers in US renewable energy development, Avangrid Renewables, LLC was formed in 1995 and executed its first renewable energy transaction in 1999. The leadership team of Avangrid Renewables, LLC is based in the US and retains the full support of the Iberdrola Group’s global network. New England Wind 1 and New England Wind 2 are fully owned by Avangrid Renewables, LLC, and its direct subsidiaries.

Figure 5.2-1 summarizes these relationships and the Avangrid Renewables, LLC corporate ownership structure. Note, any reference in this proposal to New England Wind 1 or New England Wind 2 refers to Park City Wind LLC or Commonwealth Wind, LLC, respectively.

2 On March 6, 2024, Avangrid received a non-binding proposal from Iberdrola to acquire all the issued and outstanding shares of common stock of Avangrid not already owned by Iberdrola or its affiliates. The Unaffiliated Committee of the Avangrid Board of Directors, comprised of three independent members of the Avangrid Board of Directors, is responsible for evaluating negotiating, and approving or disapproving the proposal, advised by independent financial and legal advisors. No decision has yet been made with respect to Avangrid’s response to the proposal or any alternatives thereto. Additional information regarding this non-binding offer can be found in Avangrid’s Form 8-K filed with the Securities & Exchange Commission on March 7, 2024: https://www.avangrid.com/investors/investors/secfilings
Commonwealth Wind, LLC were originally assigned to two previously contracted projects, Park City Wind and Commonwealth Wind. The contracts for Park City Wind and Commonwealth Wind have been terminated and New England Wind 1 and New England Wind 2 are new iterations of these projects that build on their multiple years of development and pre-FID engineering and procurement experience. More information on the termination of these contracts can be found in Section 5.6.

Figure 5.2-1 Avangrid Business Entity Ownership Structure

Avangrid Renewables, LLC is headquartered in Portland, Oregon, with its Offshore Wind Center of Excellence based in Boston, Massachusetts. Together, the onshore and offshore renewable divisions own over 9.3 GW of electricity capacity in 22 states, making it the fourth-largest renewables operator in the US. With more than 74 renewable energy projects in operation, Avangrid is an industry leader based on installed capacity. The Company is recognized as an early mover in the US offshore wind industry, with Vineyard Wind 1 under construction as the first commercial-scale US offshore wind project and New England Wind 1, New England Wind 2, and Kitty Hawk Wind all in advanced stages of development. The Company has an additional pipeline of over 26,000 megawatts (MW) of future renewable energy projects (approximately 20,000 MW onshore renewables and nearly 6,000 MW offshore wind) in various stages of development as of December 31, 2023. This extensive experience is complemented by that of the Company’s affiliates, further described in Section 12. A full list of Avangrid subsidiary and affiliate companies can be found in Attachment 5.19-1 and Attachment 5.19-2.
5.3. Financing Plan

Please provide a description of the financing plan for the project, including construction and term financing. The financing plan should address the following:

1. Who will finance the project (or are being considered to finance the project) and the related financing mechanism or mechanisms that will be used (i.e. convertible debenture, equity or other) including repayment schedules and conversion features
2. The project’s existing initial financial structure and projected financial structure
3. Expected sources of debt and equity financing
4. Estimated construction costs
5. The projected capital structure
6. Describe any agreements, both pre and post commercial operation date, entered into with respect to equity ownership in the proposed project and any other financing arrangement.

In addition, the financing plan should address the status of the above activities as well as the financing of development and permitting costs. All bidders are required to provide this information.

The plan provided herein serves as the anticipated strategy for financing the development and construction of New England Wind 1 and New England Wind 2. It is important to note that the Projects' financing paths are subject to change as a result of turbulence in financial markets and the potential variance of equity interests included in this proposal. Given the sizes and development time horizons for the Projects, the Company is prepared to respond to changes, seek creative alternatives, and commit capital resources to ensure the successful deliveries of New England Wind 1 and New England Wind 2.

5.3.1 Project Financing
5.3.2 Financial Structure

5.3.3 Debt and Equity Financing

5.3.4 Estimated Construction Costs
Projected Capital Structure

Ownership Agreements

5.4. Financing Experience

Provide documentation illustrating the experience of the bidder in securing financing for projects of similar size and technology. For each project previously financed provide the following information:

1. Project name and location
2. Project type and size
3. Date of construction and permanent financing
4. Form of debt and equity financing
5. Current status of the project
5.4.1 Vineyard Wind 1

Avangrid has a proven ability to successfully execute financing plans for projects of similar size and scope, as demonstrated by Vineyard Wind 1. The 800 MW project is located in federal waters in Lease Area OCS-A-0501, 15 miles south of Martha’s Vineyard and Nantucket and 35 miles from mainland Massachusetts. With approximately $2.3 billion of project debt, Vineyard Wind 1 represents one of the largest project financings in a single renewable energy project in the US. Advised by Santander, Vineyard Wind 1 construction financing includes loans from 25 of leading commercial banks worldwide. Due diligence for debt and tax equity financing under Vineyard Wind 1 started in 2019 but was put on hold as that project underwent additional federal permitting reviews. On May 11, 2021, the US Department of the Interior issued the Record of Decision on the Construction and Operations Plan (COP), allowing Vineyard Wind 1 to become the first commercial-scale offshore wind project in the US to achieve FC for the construction loan in September 2021. Onshore and offshore construction commenced in late 2021 and late 2022, respectively.

On October 25, 2023, Avangrid announced that Vineyard Wind 1 closed a first-of-its-kind tax equity package for commercial-scale offshore wind with three US-based banks. Tax equity was provided by the three largest commercial banks in the US—J.P. Morgan Chase, Bank of America, and Wells Fargo. The partnership agreements were executed in October 2023, and initial funding by the banks occurred in December 2023. Approximately $1.2 billion of funds are expected to be invested in Vineyard Wind 1 by these banks by the time the facility is completed, making it the largest single-asset tax equity financing and the first for a commercial-scale offshore wind project.

The FC milestone enabled Vineyard Wind 1 to provide contractors with a notice to proceed (NTP), allowing for the initiation of hiring, training, and mobilization for both onshore and offshore construction. This major milestone has provided Avangrid transaction documents that can be repeated for future offshore financings, served as a lesson in successful collaboration with banking and stakeholder syndicates, and given Avangrid confidence in the financial plans for New England Wind 1 and New England Wind 2.

In addition to projects in the US, Avangrid’s team of industry experts has a long track record of developing offshore and onshore wind projects across the globe. The team is supported by experienced personnel working for the Company’s affiliates, as well as expert consultants with knowledge in offshore wind, permitting, and local infrastructure construction, whose participation ensures a well-rounded team with the skillset required to develop and operate offshore wind projects. More information about the team can be found in Section 12.

5.4.2 Onshore Renewables Projects

Avangrid is the fourth-largest developer of onshore wind projects in the US. As of December 2023, the Company has more than 8,800 MW of installed wind and solar capacity across the country, including 8,045 MW of installed onshore wind capacity from 68 sites it has successfully financed and developed. The structured finance team at Avangrid has raised over $3 billion in tax equity financings for its onshore wind and solar projects, starting with its initial partnership in 2006. This history has
given Avangrid tremendous experience in negotiating. Closing these partnerships allowed Avangrid to finance a significant portion of its onshore CapEx requirements.

5.4.3 Iberdrola Group Offshore Wind Project Financing Experience

Avangrid benefits from being a part of the Iberdrola Group, a global leader in wind energy operations and asset management. The Iberdrola Group has over 11,400 WTGs deployed both onshore and offshore and approximately 23 GW of wind energy generation assets in operation.

The Iberdrola Group’s first offshore wind project, West of Duddon Sands, was a joint venture between ScottishPower Renewables (a subsidiary of Iberdrola) and Ørsted. This project featured 108 3.6 MW Siemens Wind Power WTGs with a total capacity of 389 MW and has been fully operational since 2014. Wikinger followed shortly after as the Iberdrola Group’s first solo project. Wikinger is a 350 MW project based in the German Baltic Sea featuring 70 Areva 5 MW WTGs. Wikinger has been fully operational since 2018. East Anglia ONE became fully operational in July 2020 and is the Iberdrola Group’s largest project completed to date, with 102 Siemens Gamesa 7 MW WTGs and an installed capacity of 714 MW. This July, the 496 MW Saint-Brieuc project located off the coast of France delivered first power to the grid and achieved commissioning. The Iberdrola Group has also started construction of several other projects: East Anglia Three, Windanker, and Baltic Eagle.

The Iberdrola Group’s investment history demonstrates its considerable experience developing utility-scale offshore wind projects and is summarized below. Table 5.4-1 lists select Iberdrola Group’s offshore wind projects that are financed and either in operation or were under construction prior to 2023 and includes the form of financing utilized for the projects. It does not include additional offshore projects that have not yet achieved FC.
Table 5.4-1 Financing of Iberdrola Group's Offshore Wind Projects

<table>
<thead>
<tr>
<th>Name</th>
<th>Size (MW)</th>
<th>Date of Permanent Financing</th>
<th>Commercial Operation Date</th>
<th>Form of Debt and Equity Financing</th>
</tr>
</thead>
<tbody>
<tr>
<td>West of Duddon Sands¹</td>
<td>389</td>
<td>Q2 2011</td>
<td>October 2014</td>
<td></td>
</tr>
<tr>
<td>Wikinger²</td>
<td>350</td>
<td>Q2 2014</td>
<td>October 2018</td>
<td></td>
</tr>
<tr>
<td>East Anglia ONE³</td>
<td>714</td>
<td>Q1 2016</td>
<td>July 2020</td>
<td></td>
</tr>
<tr>
<td>Saint-Brieuc</td>
<td>496</td>
<td>Q1 2020</td>
<td>Expected 2024</td>
<td></td>
</tr>
<tr>
<td>Baltic Eagle</td>
<td>476</td>
<td>Q3 2020</td>
<td>Expected 2024</td>
<td></td>
</tr>
<tr>
<td>Vineyard Wind 1⁴</td>
<td>800</td>
<td>Q3 2021</td>
<td>Expected 2024</td>
<td>$2.3 billion construction & term loan(s), and ~$1.2 billion tax equity</td>
</tr>
<tr>
<td>East Anglia THREE⁵</td>
<td>1,400</td>
<td>Q1 2023</td>
<td>Expected 2026</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. 50/50 joint venture between ScottishPower Renewables and Ørsted.
2. 51/49 ownership structure with Iberdrola Renewables Deutschland and Energy Infrastructure Partners.
3. 60/40 ownership structure between ScottishPower Renewables and Bilbao Offshore Holding Limited.
4. 50% owned by Avangrid Renewables, LLC and 50% owned by funds of Copenhagen Infrastructure Partners.
5. Concurrently developed as East Anglia Hub. $1.4 billion tax equity financing transaction not yet closed.

5.5. Financial Resources and Strength

Please provide evidence that the bidder has the financial resources and financial strength to complete and operate the project as planned, including contingencies for project delays or cost overruns.

As noted in Section 5.2, Avangrid Renewables, LLC is supported by its shareholder company, Avangrid, Inc., a public company with an equity market capitalization of approximately $13 billion as of December 2023. Avangrid, Inc. is part of the Iberdrola Group. Iberdrola is an energy pioneer, the
leading power producer from wind, and one of the largest electricity companies in the world in terms of stock market capitalization, with one of the largest renewable asset bases of any company in the world. As of December 2023, Iberdrola has a market cap of approximately $83 billion. At the end of December 2023, Iberdrola had 62,883 MW of installed generation capacity. Of this capacity, more than 42,000 MW are renewable resources. More than half (i.e., 22,676 MW) of Iberdrola’s renewable energy capacity portfolio is onshore and offshore wind; the remainder is hydropower and other renewable technologies. Iberdrola has committed more than $10 billion in financing to the construction of offshore wind projects in Europe.

Avangrid, Inc. has the ability to raise additional equity capital from Iberdrola, or from US public equity markets, if needed. The Company also has access to the investment-grade debt capital markets, with $2.9 billion of long-term debt outstanding. In addition, Avangrid, Inc.’s utilities access the debt capital markets directly and have approximately $8 billion of long-term debt outstanding as of December 31, 2023. Avangrid, Inc. also has committed $3.6 billion to a revolving credit facility provided by a syndicate of approximately 25 banks, and a credit facility up to $750 million through Iberdrola.

Avangrid, Inc. has strong financial performance based on its financial statements and credit ratings that is reflective of the financial obligations and potential liabilities understood in support of the Projects. Given the resources cited above, it is equally prepared for contingencies. Avangrid, Inc.’s audited annual reports for fiscal years (FY) 2022, 2021, and 2020 are linked in Table 5.8-1. Avangrid, Inc’s latest credit ratings are provided in Table 5.8-2.

In terms of personnel, Avangrid has a team of nearly 150 locally based offshore wind employees supporting its US projects, as well as a US Offshore Wind Center of Excellence in Boston, Massachusetts. With Vineyard Wind 1, Avangrid is a part of the first team in the US to bring a commercial-scale offshore wind project to completion in the federal and state permitting process, conclude procurement and contracting for all major contract packages, finalize interconnection agreements, achieve FC, begin construction activities, and achieve first power.

5.6. Financial Difficulties of Bidder

Provide details of any financial difficulties by the bidder or any of its past or present affiliates which impaired the viability and/or financing of the development and construction of projects of similar type, size, and complexity of the proposed eligible project or other large scale renewable energy project, including any past terminated projects and claims of financial difficulties. Bidders must demonstrate how the proposed eligible project materially differs from any past projects and demonstrate fully the financial viability of the project as bid.

Avangrid previously entered into 20-year agreements with the Electric Distribution Companies (EDCs) in Massachusetts and Connecticut for energy and RECs associated with two prior iterations of the projects that Avangrid is currently seeking to re-bid as New England Wind 1 and New England Wind 2 in this solicitation: Park City Wind (804 MW) and Commonwealth Wind (1,200 MW).

Following execution and approval of the PPAs for Commonwealth Wind and Park City Wind, the offshore wind industry experienced unprecedented economic headwinds stemming from inflation, rising interest rates, and challenges within the supply chain in the aftermath of the COVID-19 pandemic and Russian invasion of Ukraine. These challenges made Park City Wind and Commonwealth Wind
commercially unviable at the prices approved in the PPAs. After exploring all potential solutions to the financial challenges facing Park City Wind and Commonwealth Wind and engaging in good-faith, transparent, and productive discussions with the Commonwealth of Massachusetts and the State of Connecticut regarding these challenges, Avangrid reached the difficult conclusion that the only way to ensure the completion of these projects was to terminate the existing PPAs and re-contract the capacity at sustainable pricing levels. Following several months of negotiation, the EDCs in both states agreed to orderly terminations of the PPAs in exchange for payments by Avangrid of approximately $48 million (Commonwealth Wind) and $16 million (Park City Wind) in 2023.

Avangrid was the first major offshore wind developer to discuss the economic challenges facing the industry and its New England offshore wind projects publicly. Avangrid is committed to working with all stakeholders to find private and public solutions to the global price increases and supply chain disruptions and is confident New England Wind 1 and New England Wind 2 are financially viable at the pricing levels put forth in this proposal, while sharing as much value back to ratepayers as possible to still obtain project financing. Having already invested millions of dollars into the permitting and development of New England Wind 1 and New England Wind 2 and given the advanced stage of the Projects and their inherent benefits, Avangrid has the utmost confidence that it can address the current economic challenges and offer the most cost-effective pricing with guaranteed viability; a superior timeline for completion that positions Massachusetts to meet its 2030 climate target; and the creation of thousands of jobs and transformational economic development opportunities.

Other than Park City Wind and Commonwealth Wind, Avangrid has never encountered financial difficulties that impaired the viability and/or financing of the development and construction of projects of similar type, size, and complexity. More details available in Section 5.15.

5.7. Financial Forecasting

Describe the assumptions applied by Bidder regarding forecast changes in project costs during the contract term, interest rates over the development period, key input commodity prices, and the methodology used to establish the project contingency amount. Bidder must explain why these assumptions are reasonable and describe and quantify how the project as proposed is designed to absorb sufficient risk to ensure the project can be successfully financed at the proposed price, including the Indexing Adjustment, if applicable.

Avangrid has prepared pricing that will allow New England Wind 1 and New England Wind 2 to move forward in the event of contingencies and unexpected increases in commodity prices and foreign exchange rates. Supplier contracts are often exposed to a variety of individual indices and individual weightings based on the core commodity costs of the supplier, such as steel, copper, fuel, labor, fabrication, consumer price index, and rare earth metals, among others. This leaves Project CapEx open until each individual contractor’s NTP, when supply costs are locked based on the spot rate of those indices.
5.8. Financial Statement and Annual Reports

Provide complete copies of the most recent audited financial statement and annual report for each bidder for each of the past three years; including affiliates of the bidder (if audited statements are not available, reviewed or compiled statements are to be provided). Also, provide the credit ratings from Standard & Poor's and Moody's (the senior unsecured long term debt rating or if not available, the corporate rating) of the bidder and any affiliates and partners.

Avangrid, Inc., is an entity traded on the New York Stock Exchange. Avangrid, Inc.’s audited annual reports and its credit ratings as of October 2023 are provided in Table 5.8-1 and Table 5.8-2, respectively, and in US Securities and Exchange Commission filings, which can be accessed via the Company’s website. The latest issued reports were the Company’s Q4 2023 results and the FY2023 10-K, released on February 24, 2024.

Avangrid Renewables, LLC’s ultimate parent company, Iberdrola, is listed on the stock exchanges in Madrid (Ibex-35), Barcelona, Bilbao, and Valencia. In New York, the company is listed in the form of American Depository Receipts. Annual reports for Iberdrola can also be found in Table 5.8-1 and online.

Table 5.8-1 Avangrid, Inc. and Iberdrola Annual Reports Attachments

<table>
<thead>
<tr>
<th>Attachment</th>
<th>Document</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment 5.8-1</td>
<td>Avangrid, Inc. Annual Report 2023</td>
<td>FY2023 10-K Form</td>
</tr>
<tr>
<td>Attachment 5.8-2</td>
<td>Avangrid, Inc. Annual Report 2022</td>
<td>FY2022 10-K Form</td>
</tr>
<tr>
<td>Attachment 5.8-3</td>
<td>Avangrid, Inc. Annual Report 2021</td>
<td>FY2021 10-K Form</td>
</tr>
<tr>
<td>Attachment 5.8-4</td>
<td>Avangrid, Inc. Annual Report 2021 (Amended)</td>
<td>FY2021 10-K / A Form</td>
</tr>
<tr>
<td>Attachment 5.8-5</td>
<td>Avangrid, Inc. Annual Report 2020</td>
<td>FY2020 10-K Form</td>
</tr>
<tr>
<td>Attachment 5.8-6</td>
<td>Iberdrola Annual Report 2023</td>
<td>FY2023 Consolidated Report</td>
</tr>
<tr>
<td>Attachment 5.8-7</td>
<td>Iberdrola Annual Report 2022</td>
<td>FY2022 Consolidated Report</td>
</tr>
<tr>
<td>Attachment 5.8-8</td>
<td>Iberdrola Annual Report 2021</td>
<td>FY2021 Consolidated Report</td>
</tr>
<tr>
<td>Attachment 5.8-9</td>
<td>Iberdrola Annual Report 2020</td>
<td>FY2020 Consolidated Report</td>
</tr>
</tbody>
</table>

Table 5.8-2 Credit Ratings for Avangrid, Inc. (as of December 2023)

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Standard & Poor’s</th>
<th>Moody’s</th>
<th>Fitch IBCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avangrid, Inc.</td>
<td>BBB+ (Stable)</td>
<td>Baa2 (Stable)</td>
<td>BBB+ (Stable)</td>
</tr>
</tbody>
</table>

5.9. Board of Directors, Officers, and Trustees

Please also include a list of the board of directors, officers and trustees for the past three years and any persons who the bidder knows will become officers, board members or trustees.

Current and past members (from the past three years) of Avangrid Renewables, LLC’s Board of Managers and Officers are listed in Table 5.9-1 below.

Table 5.9-1 Avangrid Renewables, LLC Board of Managers

<table>
<thead>
<tr>
<th>Years of Appointment</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Board of Managers</td>
</tr>
<tr>
<td>2012–Present</td>
<td>Xabier Viteri</td>
</tr>
<tr>
<td>2020–Present</td>
<td>David Mesonero</td>
</tr>
<tr>
<td>2021–Present</td>
<td>Jose Antonio Miranda</td>
</tr>
<tr>
<td>2022–Present</td>
<td>Alvaro Martinez</td>
</tr>
<tr>
<td>Years of Appointment</td>
<td>Name</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>2022–Present</td>
<td>Elizabeth Timm</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Justin Lagasse</td>
</tr>
<tr>
<td></td>
<td>Former Managers</td>
</tr>
<tr>
<td></td>
<td>Officers</td>
</tr>
<tr>
<td>2021–Present</td>
<td>Jose Antonio Miranda, President and Chief Executive Officer</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Saygin Oytan, Chief Operating Officer Offshore Wind</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Kenneth Kimmell, Chief Development Officer - Offshore Wind</td>
</tr>
<tr>
<td>2020–Present</td>
<td>Jorge Pedron, Chief Operating Officer (Onshore)</td>
</tr>
<tr>
<td>2020–Present</td>
<td>Sara Parsons, Vice President – Organic Growth (Onshore)</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Brian Faist, Vice President – Commercial (Onshore)</td>
</tr>
<tr>
<td>2022–Present</td>
<td>Jose Luis Gutierrez, Vice President – Planning & Analysis</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Eleftheria (Lora) Chante, Vice President – Operations and Maintenance (Onshore)</td>
</tr>
<tr>
<td>2020–Present</td>
<td>Tim McCabe, Vice President – Asset Management</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Elcin Selman, Vice President – Project Delivery (Onshore)</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Nuria Soto, Vice President – Offshore Operations and Maintenance</td>
</tr>
<tr>
<td>2014–Present</td>
<td>Alex Tait, Chief Compliance Officer</td>
</tr>
<tr>
<td>2022–Present</td>
<td>Leonard Rodriguez, Vice President, General Counsel and Secretary</td>
</tr>
</tbody>
</table>
Table 5.9-1 Avangrid Renewables, LLC Board of Managers

<table>
<thead>
<tr>
<th>Years of Appointment</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023–Present</td>
<td>Miguel Sanchez Calero, Vice President – Offshore Wind Projects</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Iker Garcia Magrach, Vice President – Offshore Wind Projects</td>
</tr>
<tr>
<td>2023-Present</td>
<td>Jorge Alvaro Semsa, Controller</td>
</tr>
<tr>
<td>2023–Present</td>
<td>Michael Distefano, Assistant Secretary</td>
</tr>
</tbody>
</table>

Former Officers

5.10. Required Security

The bidder should demonstrate its ability (and/or the ability of its credit support provider) to provide the required security, including its plan for doing so.

Avangrid will provide the required security by way of cash, certified funds, a letter of credit, or guarantees in the form of equity capital, as permitted by the Company. The security value provided will be equal to the amounts included in the executed PPAs.

5.11. Disclosure of Credit Issues

Provide a description of any current or recent credit issues/credit rating downgrade events regarding the bidder or affiliate entities raised by rating agencies, banks, or accounting firms.

Avangrid and its affiliates have not experienced any recent credit issues, or any other financial issues raised by rating agencies, banks, or accounting firms (see Section 5.6). In July 2021, Avangrid, Inc. was downgraded by Moody’s to Baa2 (stable) from Baa1. The downgrade event was a result of the standard review process performed by the rating agency. A Baa2 credit rating is an investment-grade
rating and does not significantly impact the ability of Avangrid, Inc. to provide the financial support required to successfully deliver the Projects.

5.12. Utilization of Tax Credits

Describe the role of the Federal Production Tax Credit ("PTC") or Investment Tax Credit ("ITC"), and any other incentives, on the financing of the project. In your response, please describe:

- your plan to qualify for the ITC/PTC and the level of the ITC/PTC for which you plan to qualify
- the facilities, investment in which, the ITC is expected to apply
- your plan to utilize the tax credits and the relationship to your financing plan
- how qualification for the ITC/PTC is reflected in your proposed pricing.

Avangrid is open to negotiating the sharing of any future favorable tax treatment or federal grants, loans, incentives, or subsidies that could possibly be shared with Massachusetts ratepayers which are in addition to the tax benefits it has identified above. The Company has not submitted a price contingent on any future receipt of benefits and the timing, and impact of any future tax benefit is currently unknown.
5.13. Tax Credits, Subsidies, and Grants

Bidders must clearly state their assumptions regarding the availability of federal or state tax credits, subsidies, or grants or other incentives, including but not limited to those available under the Inflation Reduction Act of 2022, the Infrastructure Investment and Jobs Act of 2022.

5.14. Federal Domestic Content and Labor Requirements

Bidders should describe any plans to meet federal domestic content and labor requirements in order to maximize federal tax credits available to the project under the Inflation Reduction Act (IRA). Bidders should also describe plans to pursue state funding available to offshore wind projects through MassCEC.
5.15. Litigation, Disputes, and Appeals

Bidders must disclose any litigation or disputes in the last three-year period related to projects developed, owned or managed by Bidder or any of its affiliates in the United States, or related to any energy product sale agreement.

Avangrid Renewables, LLC is a part of a large corporate entity and, consequently, the Company and its affiliates are involved in litigation and disputes from time to time in the ordinary course of business. This section identifies those litigations and disputes concerning Avangrid Renewables, LLC’s (and its subsidiaries’) PPA and offshore-related activities that have been active within the past five years. As a public company, additional information concerning Avangrid’s material litigation and disputes, including with respect to its regulated affiliates, is available in its regular annual and quarterly disclosures with the Securities and Exchange Commission, available here: https://www.avangrid.com/investors/investors/secfilings.

5.15.1 Avangrid Renewables, LLC and Affiliates

Nike v. Karankawa Wind

On May 4, 2021, Nike USA, Inc. (Nike), the buyer under a virtual PPA with a subsidiary of Renewables, provided notice that it disagrees with the settlement amounts included in certain invoices. The PPA provides for a monthly settlement between the parties based on the metered output of the project based on a stated hub price. The disagreement relates as to the appropriate hub price to use for settlement calculations, most notably during Winter Storm Uri in February of 2021. Nike has requested an adjustment to the invoices that would increase the amount payable by approximately $31 million. Renewables has responded that the invoices have been properly calculated in accordance with the provisions of the PPA, and that Nike is not entitled to any further payments.

On June 16, 2023, Nike filed suit against the Company and certain subsidiaries of Renewables alleging breach of contract, and seeking more than $31 million in invoice adjustments, fees, and interest. The Company filed a motion to dismiss the complaint, which the Circuit Court of the State of Oregon for the County of Multnomah denied on October 25, 2023, following oral arguments. The case is currently proceeding with an expected trial beginning on October 14, 2024. We cannot predict the outcome of this matter.

California Energy Crisis Litigation

Two California agencies brought a complaint in 2001 against a long-term PPA entered by Avangrid Renewables, as seller, to the California Department of Water Resources, as purchaser, alleging that the terms and conditions of the PPA were unjust and unreasonable. The Federal Energy Regulatory Commission (FERC) dismissed Avangrid Renewables from the proceedings; however, the Ninth Circuit Court of Appeals reversed the dismissal.

A hearing was held before a FERC administrative law judge in November and early December 2015. A preliminary proposed ruling by the administrative law judge was issued on April 12, 2016. The proposed ruling found no evidence that Avangrid Renewables had engaged in any unlawful market conduct that
would justify finding the Avangrid Renewables PPAs unjust and unreasonable. However, the proposed ruling did conclude that the price of the PPAs imposed an excessive burden on customers in the amount of $259 million. Avangrid Renewables' position, as presented at hearings and agreed by the FERC trial staff, is that Avangrid Renewables entered into bilateral PPAs appropriately and complied with all applicable legal standards and requirements. On June 17, 2021, the FERC issued an Order Establishing Limited Remand, remanding the case to the administrative law judge for additional detailed findings and legal analysis with respect to the impact of the conduct of one of the parties other than Avangrid Renewables on its long-term contracts. The order did not address any of the other findings, including all of the findings with respect to Avangrid Renewables. On December 21, 2023, FERC issued a decision in favor of Avangrid Renewables, finding that while Avangrid Renewables was a proper party to the proceedings, the Mobile-Sierra presumption attached to its contract, and the Mobile-Sierra presumption was not overcome or avoided regarding it. Consequently, FERC found that the contract is just and reasonable, and refunds for Avangrid Renewables' contract are not warranted. The decision by FERC has not been appealed.

New England Clean Energy Connect (NECEC)

In 2018, the NECEC transmission project, proposed in a joint bid by Central Maine Power, an affiliate of Avangrid Renewables, LLC, and Hydro-Québec, was selected by the Massachusetts EDCs and the Massachusetts Department of Energy Resources in the Commonwealth of Massachusetts’s 83D clean energy RFP. The NECEC transmission project includes a 145-mile transmission line linking the electrical grids in Québec, Canada and New England and will add 1,200 MW of transmission capacity to supply Maine and the rest of New England with power from reliable hydroelectric generation. NECEC has faced various permitting challenges, including a November 2021 voter referendum in Maine that sought to retroactively invalidate certain of the project's approvals. Avangrid challenged the constitutionality of the referendum and ultimately obtained a unanimous trial court decision in its favor in April 2023. On August 3, 2023, NECEC resumed limited construction and is continuing to evaluate the construction schedule for the project, related commercial operation date, and total project cost, including potential impacts from increased construction costs, disputes with third-party vendors regarding contracts and certain change orders, and a decrease in expected returns. A more detailed summary of the history of the NECEC project can be found in Avangrid's latest annual report filed with the Securities and Exchange Commission: https://www.avangrid.com/investors/investors/secfilings.

5.15.2 Vineyard Wind 1 Litigation, Disputes, and Claims

Avangrid Renewables is a 50% owner of Vineyard Wind 1, currently under construction in federal waters south of Massachusetts. Certain federal permits issued for Vineyard Wind 1 have been challenged in federal court and Vineyard Wind 1 remains a party to these litigations. The status of those lawsuits is as follows:

Nantucket Residents Against Turbines (ACK RATS) et al v. Bureau of Ocean Energy Management (BOEM)

On February 10, 2022, ACK RATS filed an amended complaint asserting Endangered Species Act (ESA) and the National Environmental Policy Act (NEPA) claims, seeking declaratory and injunctive relief, alleging that (1) BOEM failed to conduct adequate environmental review of the project; and (2) National Marine Fisheries Service (NMFS) issuance of the October 18, 2021, Biological Opinion was
arbitrary, capricious, and unlawful. ACK RATS asserts that BOEM is violating the ESA by relying on a “legally defective” Biological Opinion and that NMFS violated the ESA by authorizing BOEM to take the actions necessary for the implementation of the Vineyard Wind 1. The Court granted Vineyard Wind’s motion for summary judgment on May 17, 2023, resolving the litigation in Vineyard Wind’s favor. The ACK RATS have appealed the decision to the First Circuit Court of Appeals, where it is currently pending. A hearing on this appeal took place on March 5, 2024.

Allco Renewable Energy Limited et al v. Haaland

On July 18, 2021, Allco Renewable Energy Limited and its owner, Thomas Melone, filed a Complaint in the US District Court for Massachusetts against various federal agencies seeking to vacate and void certain federal environmental permits issued for Vineyard Wind 1 as violating NEPA, the Outer Continental Shelf Lands Act, Clean Water Act, and Marine Mammal Protection Act (MMPA).

All claims were dismissed and on September 2, 2022, the plaintiffs filed a Second Amended Complaint alleging only two claims under the MMPA—NMFS Vineyard Wind Incidental Harassment Authorization violates the MMPA and failure to adhere to the MMPA Notice Requirements.

Both parties filed for summary judgment based on the information in the administrative record that was before the agencies at the time the agency actions were finalized. A hearing on the motions for summary judgment took place on March 3, 2023. On August 4, 2023, the federal District Court in Boston granted the federal defendants’ and Vineyard Wind 1’s motion for summary judgment, resolving the litigation in Vineyard Wind 1’s favor. Mr. Malone has appealed the decision to the First Circuit Court of Appeals, which appeal is currently pending.

Responsible Offshore Development Alliance v. United States Department of Interior

On January 31, 2022, Responsible Offshore Development Alliance filed a lawsuit against the defendants, asserting claims under Outer Continental Shelf Lands Act, Clean Water Act, ESA, NEPA, and MMPA requesting declaratory judgment and injunctive relief. On February 11, 2022, Vineyard Wind intervened in the case and was granted intervenor-defendant status. Both parties filed for summary judgment based on the information in the administrative record that was before the agencies at the time the agency actions were finalized. Final briefing on the motions for summary judgment were filed March 14, 2023. A hearing was held March 24, 2023. On October 12, 2023, the federal District Court in Boston granted the federal defendants’ and Vineyard Wind 1’s motion for summary judgment, resolving the litigation in Vineyard Wind 1’s favor. Responsible Offshore Development Alliance has appealed the decision to the First Circuit Court of Appeals, which appeal is currently pending.

Seafreeze Shoreside, Inc. v. United States Department of Interior

On December 15, 2021, the Texas Public Policy Foundation on behalf of XIII Northeast Fishery Sector, Inc, Seafreeze Shoreside, Inc. (Seafreeze) and others filed suit against the Department of the Interior, BOEM, Department of Commerce, NMFS, National Oceanic and Atmospheric Administration, Department of Defense, and the US Army Corps of Engineers, asserting claims alleging violation of the Outer Continental Shelf Lands Act, ESA, Clean Water Act, and NEPA.

Both parties filed for summary judgment based on the information in the administrative record that was before the agencies at the time the agency actions were finalized. Final briefing on the motions for summary judgment were filed March 10, 2023. A hearing was held April 3, 2023. On May 10, 2023, the plaintiffs filed a motion for a stay, or in the alternative, a preliminary injunction to stop construction
work on Vineyard Wind 1; on May 25, 2023, the District Court issued a memorandum and order denying the plaintiffs’ motion. On October 12, 2023, the federal District Court in Boston granted the federal defendants’ and Vineyard Wind 1’s motion for summary judgment, resolving the litigation in Vineyard Wind 1’s favor. Seafreeze has appealed the decision to the First Circuit Court of Appeals; appeal is currently pending.

5.15.3 Park City Wind and Commonwealth Wind Litigation, Disputes, and Claims

Avangrid previously entered into 20-year agreements with the EDCs in Massachusetts and Connecticut for energy and RECs associated with two prior iterations of the projects described in this bid, Park City Wind (804 MW) and Commonwealth Wind (1,200 MW).

In May 2022, the Massachusetts EDCs submitted PPAs with Commonwealth Wind to the Massachusetts Department of Public Utilities (DPU) for approval. In late October 2022, Commonwealth Wind advised the DPU that, due to changes in economic conditions that were outside of its control, Commonwealth Wind could not move forward under the current PPAs. Commonwealth Wind attempted to work with the parties to identify a realistic path forward for the Project under the PPAs. However, the EDCs stated that they did not intend to renegotiate the PPAs and that there did not appear to be a viable path that would allow the project to move forward under the PPAs. On December 16, 2022, Commonwealth Wind notified the DPU that it could no longer support the continuation of the DPU approval of the PPAs and filed a motion to dismiss the proceedings. On December 30, 2022, the DPU denied Commonwealth Wind’s motion to dismiss and issued an order approving the PPAs. Commonwealth Wind appealed the decision. On July 13, 2023, Commonwealth Wind and the EDCs executed termination and settlement agreements terminating the PPAs with Commonwealth Wind, forfeiting $48 million in security, and submitted the agreements to the DPU for approval. On August 23, 2023, the DPU approved the termination agreements. The termination agreements became effective on October 2, 2023, resolving this matter.

Park City Wind LLC’s predecessor, Vineyard Wind LLC, signed two PPAs for Park City Wind on May 18, 2020, with the Connecticut EDCs (Eversource and United Illuminating). The executed PPAs were subsequently approved by Connecticut’s Public Utilities Regulatory Authority on August 19, 2020. Following execution and approval of the PPAs, the offshore wind industry experienced unprecedented economic headwinds stemming from inflation, rising interest rates, and challenges within the supply chain. These challenges made Park City Wind commercially unviable at the prices approved in the PPAs. After exploring all potential solutions to the financial challenges facing Park City Wind and engaging in good-faith and productive discussions with Connecticut state officials regarding these challenges, on October 2, 2023, Avangrid and the Connecticut EDCs agreed to an orderly termination
of the PPAs in exchange for a payment by Avangrid of approximately $16 million. The Public Utilities Regulatory Authority approved this termination on October 13, 2023.

For more information regarding the economic context of the Park City Wind and Commonwealth Wind contract terminations, refer to Section 5.6.

5.16. Operating Life

What is the expected operating life of the proposed project?
What is the depreciation period for all substantial physical aspects of the bid, including generation facilities, delivery facilities to move power to the grid, and mandatory and voluntary transmission system upgrades?

All major components of New England Wind 1 and New England Wind 2 have useful lives in excess of the term of the Form PPAs. The facilities are expected to have a physical life expectancy of 30 years and decommissioning will occur at the end of each Project’s operating term. The standard useful life of the WTGs is 25 years, at a minimum, with an opportunity to extend. The offshore export cables are expected to have even longer functional lives but would be included as part of each Project’s decommissioning, as required by BOEM regulations and Avangrid’s Lease Agreement. BOEM has proposed in recent rulemaking to extend the lease duration.¹⁰

5.17. Status of Financing

Has the bidder already obtained financing, or a commitment of financing, for the project?

¹⁰ In BOEM’s Proposed Renewable Energy Modernization Rule [Docket No. BOEM–2023–0005], the agency explores several mechanisms for extending the duration of offshore wind leases granted to auction winners.
If financing has not been obtained, explain how obtaining a long-term agreement as proposed will help you in obtaining financing for the proposed project, in obtaining more favorable terms for the financing of the proposed project, or in supporting the future capital investment.

Long-term contracts make it possible to finance offshore wind projects by fixing the price paid for any generated electricity during an asset's economic life. Upon current market conditions, a long-term contract resulting from this RFP would enable Avangrid to obtain financing for the Projects. With a term on the order of 20 years, this contract would further facilitate Avangrid's ability to secure a financing package with a lower cost of capital, which ultimately translates into savings for ratepayers.

5.18. Previously Executed Agreements

State whether the bidder or its affiliates have executed agreements with respect to energy, RECs and/or capacity for the proposed project (including any agreements that have been terminated) and provide information regarding the associated term and quantities, and whether bidder has been alleged to have defaulted under or breached any such agreement.

State whether the bidder or its affiliates have submitted proposals to other buyers, the status of consideration of such proposals, and the impact of such proposal(s), if they result in an executed contract or contracts, on the proposal(s) submitted in response to this RFP.

Avangrid previously entered into 20-year agreements with the EDCs in Massachusetts and Connecticut for energy, capacity, and RECs associated with prior iterations of New England Wind 1 and New England Wind 2: Park City Wind (804 MW) and Commonwealth Wind (1,200 MW).

More information regarding the timeline and context for termination of these prior PPAs can be found in Section 5.6 and Section 5.15.3.
5.19. Affiliated Entities and Joint Ventures

List all of the Bidder's affiliated entities and joint ventures transacting business in the energy sector.

The Company and its affiliates regularly conduct business in the energy sector. Table 5.19-1 provides details for Avangrid and Iberdrola affiliate entities and joint ventures.

Table 5.19-1 Affiliates Attachments

<table>
<thead>
<tr>
<th>Attachment</th>
<th>Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment 5.19-1</td>
<td>Avangrid, Inc. Affiliate Companies 2023</td>
</tr>
<tr>
<td>Attachment 5.19-2</td>
<td>Iberdrola Affiliate Companies 2023</td>
</tr>
</tbody>
</table>

5.20. Bankruptcy

Has Bidder, or any affiliate of Bidder, in the last five years:

- consented to the appointment of, or been taken in possession by, a receiver, trustee, custodian or liquidator of a substantial part of its assets
- filed a bankruptcy petition in any bankruptcy court proceeding

12 Acts of 2021, Chapter 8, Section 11F3/4 (c)
In the last five years, neither Avangrid nor any affiliate has:

- Consented to the appointment of, or was taken in possession by, a receiver, trustee, custodian, or liquidator of a substantial part of its assets;
- Filed a bankruptcy petition in any bankruptcy court proceeding;
- Answered, consented, or sought relief under any bankruptcy or similar law, or failed to obtain a dismissal of an involuntary petition;
- Admitted in writing of its inability to pay its debts when due;
- Made a general assignment for the benefit of creditors;
- Been the subject of an involuntary proceeding seeking to adjudicate that party bankrupt or insolvent; or
- Sought reorganization, arrangement, adjustment, or composition of it or its debt under any law relating to bankruptcy, insolvency or reorganization or relief of debtors.

5.21. Conflict(s) of Interest

Briefly describe any known conflicts of interest between Bidder or an affiliate of Bidder and any Distribution Company, or any affiliates of the foregoing

Avangrid Renewables, LLC and its affiliates do not have any known conflicts of interest with the Massachusetts EDCs, or any affiliates of the foregoing.

5.22. Offshore Wind Litigation, Disputes, or Complaints

Describe any litigation, disputes, claims, complaints or notices of violation or potential violation involving the project or other offshore wind projects involving the Bidder or an affiliate of the Bidder.

Avangrid Renewables, LLC is a large renewable energy company working to develop utility-scale offshore wind projects. Because offshore wind is a nascent industry that interacts with many individual and business entities, Avangrid is involved with litigation, claims, and complaints relating to the industry. A more detailed summary of these types of matters can be found in Section 5.15.
5.23. Project Delays and Mitigation Strategies

Describe any failures to achieve commercial operation dates under other PPAs. Bidders should also provide a credible description of how the current proposed project will avoid similar project delays or development issues.

As offshore wind is a nascent industry, unexpected obstacles to construction may appear. Avangrid is prepared to acknowledge previous project delays and apply lessons learned to future projects, including New England Wind 1 and New England Wind 2.

5.23.1 Vineyard Wind 1 Commercial Operation Date Extension

In Spring 2020, Vineyard Wind 1 completed all state, regional, and local permitting processes. However, Vineyard Wind 1 experienced difficulty with permitting approval at the federal level. In 2019, BOEM announced they planned to delay a decision on Vineyard Wind 1 to conduct a cumulative impact review of future offshore wind developments. The Supplement to the Draft Environmental Impact Statement was issued the following year in June 2020. Following this obstacle, five virtual public meetings were held regarding the Supplement to the Draft Environmental Impact Statement, and over 29,000 public comments were submitted, overwhelmingly in support of moving forward with Vineyard Wind 1 and future offshore wind projects.\(^\text{13}\) Vineyard Wind 1 eventually received federal approval in May 2021.\(^\text{14}\)

Due to the federal permitting delays, Vineyard Wind 1’s COD was extended to 2024. After this brief setback, Vineyard Wind 1 has continued to lead the offshore wind industry reaching new and exciting milestones on a regular basis. In September 2021, the joint venture reached a $2.3 billion financing agreement with nine global lending banks and became the first commercial scale offshore wind project to reach FC in the US. In November 2021, construction began on Vineyard Wind 1, bringing the joint venture one step closer to generating wind power sufficient to meet demand from over 400,000 homes and businesses across the Commonwealth. In October 2023, Vineyard Wind 1 closed an approximately $1.2 billion, first-of-its-kind tax equity financing for the project. On January 2, 2024, the project delivered first power to the New England electricity grid. Vineyard Wind 1 is revolutionary for the offshore wind industry as it is 25 times the size of the only existing offshore wind facility in the US. The project will prevent the emission of more than 1.6 million tons of carbon dioxide every year, generate 3,600 full-time jobs, and save $3.7 billion in energy costs in the New England region.

With Avangrid’s previous experience navigating and overcoming permitting delays in project development with Vineyard Wind 1, the Company is confident in its ability to successfully develop and achieve set CODs in future endeavors.

5.23.2 Commonwealth Wind and Park City Wind

As summarized earlier, Avangrid made the difficult decision to seek termination of its prior PPAs for Commonwealth Wind and Park City Wind because of certain market factors that made the projects unfinanceable at previously agreed pricing levels. More about the context of these terminations can

\(^{13}\) https://www.vineyardwind.com/vw1-permitting

\(^{14}\) https://www.doi.gov/pressreleases/biden-harris-administration-approves-first-major-offshore-wind-project-us-waters
be found in Section 5.6 and Section 5.15. In its response to this RFP, Avangrid has incorporated valuable lessons learned, including the increasing the maturation of its CapEx costs and improving its supply chain strategy, in addition to significantly advancing permitting.

5.23.3 Plans to Avoid Delays and Development Issues

5.23.3.1 New England Wind 1

New England Wind 1 is a shovel-ready project that has received all major state, regional, and local permits and approvals and is on track to receive all federal permits on July 1, 2024. The risk of permitting-related schedule delays is very limited. Additionally, New England Wind 1 has fully executed interconnection agreements as well as a host community agreement with the Town of Barnstable, further reducing the potential for delays and development issues.

5.23.3.2 New England Wind 2

Project delays to New England Wind 2 will be avoided through implementation of multiple mitigation processes including lessons learned and risks management programs, and the significant permitting and engineering due diligence completed to date. Avangrid has developed robust lessons learned and risk management processes through experiences constructing Vineyard Wind 1. Lessons learned through the Vineyard Wind 1 permitting and construction processes were implemented during the New England Wind 1 state, regional, and local permitting processes, which are now complete. These lessons learned have been further expanded and implemented during the New England Wind 2 permitting processes, allowing continuous improvement in the project design and permitting process to address and mitigate risks.

Federal permitting for New England Wind 2 is nearing completion, with COP approval expected on July 1, 2024. Avangrid has engaged in continuous ongoing discussions with BOEM and multiple federal agencies to address questions and concerns pertaining to the COP. New England Wind 2 has also completed a substantial portion of the Massachusetts Environmental Policy Act environmental review and received a Draft Environmental Impact Report Certificate in October 2023. Through the review process, Avangrid has fully characterized New England Wind 2. The Massachusetts Environmental Policy Act process has provided significant opportunity for regulatory and community comment on the project design, allowing Avangrid to advance environmental and engineering due diligence and design, which helps reduce uncertainty in the project definition. Additionally, regional and local permitting for the offshore components located within state waters (i.e., export cable routing) is well underway. New England Wind 2 has received a signed Order of Conditions from the Nantucket
Conservation Commission and regional permitting with the Martha’s Vineyard Commission and local permitting with the Edgartown Conservation Commission has been initiated, with filings submitted in Q4 2023.

Finally, through continuous outreach efforts during the Vineyard Wind 1, New England Wind 1, and New England 2 development processes, Avangrid has received significant feedback on the project design and garnered significant support and recommendations to improve the project design and benefits to the communities. These are highlighted in Section 13; through implementation of these initiatives, Avangrid intends to continue building support for New England Wind 2 and its associated initiatives, which bring critical value to the Commonwealth and the New England region.

5.24. Distribution Company Litigation, Disputes, or Complaints

Describe any litigation, disputes, claims or complaints involving the Bidder or an affiliate of Bidder, against any Distribution Company or any affiliate of any Distribution Company.

5.24.1 Park City Wind, Commonwealth Wind, and Electric Distribution Companies

In October 2022, Avangrid announced it would seek to renegotiate the price of its PPAs for Park City Wind and Commonwealth Wind to help mitigate the impacts of inflation, increased interest rates, and supply chain disruptions on the projects.

On October 21, 2022, Commonwealth Wind filed a motion with the DPU seeking a one-month suspension in the DPU’s proceeding to review the PPAs between Commonwealth Wind and the Massachusetts EDCs in order to provide an opportunity for Commonwealth Wind, the EDCs, state and regulatory officials, and other stakeholders to evaluate the current economic challenges facing Commonwealth Wind and assess measures that would return the project to economic viability including, but not limited to, certain amendments to the PPAs. In December 2022, Commonwealth Wind filed a motion opposing approval of the PPAs by the DPU and requesting that the proceeding be dismissed. On December 30, 2022, the DPU entered an order denying Commonwealth Wind’s motion and approving the PPAs. On January 30, 2023, Commonwealth Wind appealed the DPU’s December 30th order to the Supreme Judicial Court of Massachusetts. On July 13, 2023, each of the EDCs filed with the DPU a first amendment, termination agreement, and release agreed with Commonwealth Wind, providing for an orderly termination of the PPAs, withdrawal of Commonwealth Wind’s appeal, and payment by Commonwealth Wind of a $48 million termination payment to the EDCs. The $48 million termination payment was an amount equal to the development period security provided for in the PPAs in connection with the regulatory approval. The DPU approved the termination agreements on August 2, 2023, and Commonwealth Wind dismissed its appeal of the DPU’s December 30th order.

On October 2, 2023, Park City Wind entered into a first amendment, termination agreement, and release with each of the Connecticut EDCs, providing for an orderly termination of the PPAs and payment by Park City Wind of an approximately $16 million termination payment to the EDCs, an amount equal to the development period security provided for in the PPAs. On October 13, 2023, Public Utilities Regulatory Authority approved the termination agreements. For more information on the context and timeline of the PPA terminations see Section 5.6 and Section 5.15.3.
5.25. Energy Purchase or Sale Litigation, Disputes, or Complaints
Describe any litigation, disputes, claims or complaints, or events of default or other failure to satisfy contract obligations, or failure to deliver products, involving Bidder or an affiliate of Bidder, and relating to the purchase or sale of energy, capacity or renewable energy certificates or products.

Avangrid is part of a large corporate entity and, consequently, Avangrid and its affiliates are involved in litigation and disputes regarding the purchase and sale of energy and other products from time to time in the ordinary course of business. Any such litigation and disputes will not have a material effect on Avangrid’s ability to perform on the contracts to be awarded pursuant to the RFP. As a public company, information concerning Avangrid’s material litigation and disputes, including with respect to its regulated affiliates, is available in its regular annual and quarterly disclosures with the Securities and Exchange Commission, available here: https://www.avangrid.com/investors/investors/secfilings.

5.25.1 Previous Commonwealth Wind and Park City Wind Contracts
As summarized earlier in Section 5.15.3, Avangrid made the difficult decision to seek termination of its prior PPAs for Commonwealth Wind and Park City Wind as a result of certain market factors that made the projects unfinanceable at previously agreed pricing levels. More about the context of this termination and the timeline can be found in Section 5.6 and Section 5.15.3.

5.25.2 Customer Service Invoice Dispute
On May 4, 2021, a buyer under a virtual PPA with a subsidiary of Avangrid Renewables, LLC provided notice that the buyer disagrees with the settlement amounts included in certain invoices. Please reference Section 5.15.1 for more information on this matter.

5.26. Governmental Agency Investigation
Confirm that neither Bidder nor any directors, employees or agents of Bidder, nor any affiliate of Bidder are currently under investigation by any governmental agency, and that none of the above have in the last four years been convicted or found liable for any act prohibited by State or Federal law in any jurisdiction involving conspiracy, collusion or other impropriety with respect to bidding on any contract, or have been the subject of any debarment action (detail any exceptions).

Avangrid is part of a large corporate family with operations in 25 states and that includes multiple regulated utilities; as a result, Avangrid and its affiliates have been involved in investigations by governmental authorities from time to time in the ordinary course of business. Any such investigations will not have a material effect on Avangrid’s ability to perform on the contracts described in this submission. As a public company, information concerning material investigations involving Avangrid’s business is available in its regular annual and quarterly disclosures with the Securities and Exchange Commission, available here: https://www.avangrid.com/investors/investors/secfilings.

Neither Avangrid, nor any of its directors or affiliates, have been convicted or found liable for any act prohibited by state or federal law in any jurisdiction involving conspiracy, collusion, or other impropriety with respect to offering on any contract or been the subject of any debarment action in the last four years.
In addition, Avangrid is not aware of any such investigations or such convictions or liabilities on behalf of its employees or agents.

5.27. Regulatory and Other Approvals

Identify all regulatory and other approvals needed by Bidder to execute a binding sale agreement.

The Form PPAs contain conditions that must be met, including regulatory approvals and transmission approvals, prior to the agreements taking effect. Such approvals consist of the Regulatory Approval and any Related Transmission Approvals, as each term is defined in the Form PPAs. Avangrid does not condition its execution of a binding sale agreement on any other approval other than that of its Board of Managers in accordance with the provisions of Avangrid’s limited liability company agreement, which Avangrid will seek prior to its execution of any such sale agreement.

5.28. FERC Compliance

Describe how the project will conform to FERC’s applicable regulatory requirements, including but not limited to, FERC requirements relating to allocation of transmission capacity and open access, the justness and reasonableness of rates, the potential for undue preference or discrimination, and affiliate dealings, if any.

Describe how your proposed approach is consistent with FERC precedent and ratemaking principles.

5.28.1 Generation

Avangrid will ensure it has all the necessary FERC authorizations to supply power at wholesale in connection with this proposal. Avangrid will obtain market-based rate authority from FERC under Section 205 of the Federal Power Act as necessary to sell power at wholesale pursuant to its PPA(s). Along with its market-based rate authorization, Avangrid will also obtain the blanket authorizations and waivers from FERC that are customarily granted to entities with market-based rate authority. Avangrid will also obtain self-certification with FERC as an exempt wholesale generator (EWG) under FERC’s regulations under the Public Utility Holding Company Act of 2005. Avangrid has obtained market-based rate authority and EWG status for more than 70 affiliated generation project companies with a combined generating capacity of over 9,200 MW in its ordinary course of business and expects no complications in obtaining market-based rate authority and EWG status for the Project(s) well before its generation projects are initially energized.

Avangrid has entered (with respect to New England Wind 1) and will enter (with respect to New England Wind 2) interconnection agreements with ISO-NE and incumbent transmission owners subject to ISO-NE Tariff Schedule 22 to interconnect the Projects to the ISO-NE transmission system at a pool transmission facility (PTF) node in ISO-NE. Avangrid will transmit electricity from the Offshore Wind Energy Generation facilities to the point of interconnection via several high voltage alternating current subsea electric generator lead transmission lines and will not require the Projects to have an Open Access Transmission Tariff on file with FERC (18 C.F.R. 35.28(d)(2)). New England Wind 1 and New England Wind 2 transmission facilities are radial in nature and serve to transmit electric energy from remotely located generation facilities to a point of interconnection with transmission facilities that are...
part of the ISO-NE PTF. Avangrid will register the Projects with ISO-NE and be fully qualified to participate in the energy, capacity, and ancillary services markets under the ISO NE Tariff.

Finally, Avangrid will register (directly or via its agent) with the North American Electric Reliability Corporation as a Generator Owner and Generator Operator with regard to the facilities and will comply with any and all applicable reliability standards, maintenance, testing, and reporting requirements set forth by North American Electric Reliability Corporation and/or Northeast Power Coordinating Council as applicable to New England Wind 1 and New England Wind 2.

5.28.2 Transmission

Avangrid will assume the full market risk for the construction and operation of all transmission facilities required to interconnect the Projects to the ISO-NE PTF, has no captive customers, and the transmission capacity on these facilities will be solely and exclusively used by Avangrid to interconnect and deliver electricity generated at the proposed offshore wind facilities to an ISO-NE PTF node, as a result of the selection of the Projects in the open and transparent solicitation process under the RFP.

5.29. Direct and Indirect Affiliates

Describe and document any and all direct and indirect affiliations and affiliate relationships, contractual, financial or otherwise in the past three years between the bidder and one or more of the Distribution Companies and their affiliates, including all relationships in which one of the Distribution Companies or their affiliates has a financial or voting interest (direct or indirect) in the bidder or the bidder’s proposed project. These relationships include:

- Corporate or other joint arrangements, joint ventures, joint operations whether control exists or not;
- Minority ownership (50% or less investee);
- Joint development agreements;
- Project agreements;
- Operating segments that are consolidated as part of the financial reporting process;
- Related parties with common ownership;
- Credit, debenture, and financing arrangements, whether a convertible equity feature is present or not;
- Wholly owned subsidiaries; and
- Commercial (including real property) relationships with any Distribution Company.

Neither Avangrid Renewables, LLC nor any of its affiliates have had any relationship with Massachusetts EDCs or its affiliates in the past three years.
6. Siting, Interconnection, and Deliverability

New England Wind 1 and New England Wind 2 have well-advanced siting and interconnection strategies designed to ensure that power is delivered to the New England electricity grid on schedule with minimal risk and high reliability.

The Offshore Wind Energy Generation sites for both Projects will be in Lease Area OCS-A 0534 (the Lease Area). New England Wind 1 will occupy the northern portion of the Lease Area and New England Wind 2 will occupy the southern portion. Power will be delivered to shore along a well-studied offshore export cable corridor (OECC) shared with Vineyard Wind 1.\(^1\) Utilizing a single OECC containing all offshore export cables for all three projects allows Avangrid to minimize impacts to the marine environment and maintain confidence in its plans for offshore cable routing and installation. The offshore export cable routes for Vineyard Wind 1 were thoroughly reviewed and approved by federal and state regulators during the permitting process and cabling operations were successfully completed in 2023.

Offshore export cables from New England Wind 1 will be routed to a landfall site beneath the parking lot at Craigville Beach in the Town of Barnstable (Barnstable). The preferred landfall site for the New England Wind 2 offshore export cables is the parking lot at nearby Dowses Beach in Barnstable. New England Wind 1 and New England Wind 2 offshore export cables will transition to onshore export cables in infrastructure installed beneath the respective beach parking lots before following carefully selected routes within public roadway layouts to onshore substations located in Barnstable. Site control for the New England Wind 1 and New England Wind 2 onshore substation sites has been secured. Both sites are less than a mile away from the West Barnstable Substation, which will serve as the point of interconnection (POI) for both Projects.

Avangrid has also made substantial progress towards securing necessary site control for the landfall sites and onshore export cable routes and has deeper ties to its host community than any other New England offshore wind developer. In addition to entering into a host community agreement (HCA) with Barnstable for Vineyard Wind 1 (HCA-1) in 2018, Avangrid entered into an HCA with Barnstable for New England Wind 1 in 2022 (HCA-2). HCA-2 requires Barnstable to issue all necessary easements for New England Wind 1, and both Barnstable and the Massachusetts Legislature have enacted Article 97 legislation to enable the granting of those easements. HCA-1 is included as Attachment 6.1-1 and HCA-2 is included as Attachment 6.1-2.

\(^1\) Vineyard Wind 1 is a 50/50 joint venture of Avangrid Renewables, LLC (Avangrid) and Copenhagen Infrastructure Partners P/S. Vineyard Wind 1 was the first commercial-scale US offshore wind project to obtain permitting approval at the federal and state levels, conclude procurement and contracting for all major contract packages, finalize interconnection agreements, successfully implement a financing plan, and begin onshore and offshore construction activities. It began delivering power to Massachusetts in January 2024.
Additionally, the ISO New England (ISO-NE) interconnection applications for New England Wind 1 is complete. For New England Wind 1, the System Impact Study report (SIS Report) was published in December 2020, the Transmission Service Agreement (TSA) was executed in March 2022, and the Large Generator Interconnection Agreement (LGIA) was executed in September 2022. The Federal Energy Regulatory Commission (FERC) has approved this interconnection.

6.1. Site Plan

Avangrid is proposing to build both New England Wind 1 and New England Wind 2 in the Bureau of Ocean Energy Management (BOEM)-designated Lease Area OCS-A 0534. The Lease Area is approximately 20 miles (mi) south of Martha’s Vineyard and is located southwest of Lease Area OCS-A 0501, where Vineyard Wind 1 is being constructed. Lease Area OCS-A 0534 consists of 101,590 acres.

Site plans identifying each element of New England Wind 1 and New England Wind 2 and their locations are included in this section and are also provided in larger scale in Attachment 6.1-3 and Attachment 6.1-4 for the reader’s convenience. Final design and permitting of New England Wind 1 is nearly complete and the Project is largely de-risked. For New England Wind 2, Avangrid has undertaken significant due diligence to de-risk delivery; however, given that New England Wind 2 is behind New England Wind 1 with respect to state and local permitting, several site elements are still pending final design.
6.1.1 Offshore Wind Energy Generation Facilities

Figure 6.1-1 illustrates the Eligible Facility site for the Projects. The wind turbine generators (WTGs) and electrical service platform (ESP) for New England Wind 1 will be located in the northern portion of the Lease Area and those for New England Wind 2 will be located southwest in the southern portion of the Lease Area.

2 The Eligible Facility site refers to the portion of Lease Area OCS-A 0534 where the Offshore Wind Energy Generation facilities for the Projects are located. In the future, this Lease Area designation may change if Avangrid and BOEM segregate the New England Wind 1 and New England Wind 2 areas.
6.1.2 Offshore Export Cable Routes

New England Wind 1 and New England Wind 2 offshore export cables follow substantially similar routes and are located within an OECC shared with Vineyard Wind 1’s offshore export cables, as shown in Figure 6.1-2. The OECC ranges in width from 3,100 feet (ft) to 5,100 ft, with a typical width of 3,800 ft. The offshore export cables for the Projects will travel along the western edge of Lease Area OCS-A 0501 (through Vineyard Wind 1) and then head northward through Muskeget Channel toward landfall sites in Barnstable. New England Wind 1 will utilize two 275 kilovolt (kV) high voltage alternating current (HVAC) cables to deliver power to the grid, and New England Wind 2 will utilize
three HVAC cables. One or more New England Wind 2 cables may route through a variant OECC option through Muskeget Channel (Western Muskeget Variant).

Avangrid studied and selected 275 kV HVAC technology to minimize costs, electrical losses, and provide enhanced reliability compared to a high voltage direct current (HVDC) transmission system. Using HVAC technology and delivering the Projects to the West Barnstable Substation provides for the shortest cable span, most cost-efficient solutions, and earliest delivery times for New England Wind 1 and New England Wind 2.
6.1.3 Onshore Equipment and Facilities

The New England Wind 1 landfall site, onshore export cable route, onshore substation site, and grid interconnection route are depicted in Figure 6.1-3. The New England Wind 2 preferred landfall site, onshore export cable route, onshore substation, and grid interconnection route are shown in Figure 6.1-4. Avangrid conducted exhaustive due diligence and thorough alternatives analyses prior to selecting locations of the onshore facilities for the Projects. These analyses, further described in Section 6.4.2, incorporated consultation with and feedback from permitting agencies, Barnstable, and other local stakeholders.
Figure 6.1-3 New England Wind 1 Onshore Interconnection Site Plan
Figure 6.1-4 New England Wind 2 Onshore Interconnection Site Plan
6.1.3.1 Landfall Sites

Avangrid undertook a broad assessment to identify potential landfall sites where the transition from offshore export cables to onshore export cables could occur while minimizing environmental impact. The landfall site selection process involved several iterations of review and due diligence that resulted in the selection of the Craigville Beach parking lot as the landfall site for New England Wind 1 and the Dowses Beach parking lot as the preferred landfall site for New England Wind 2.

New England Wind 1

The two New England Wind 1 offshore export cables will transition onshore via horizontal directional drilling (HDD) beneath the parking lot at Craigville Beach in Barnstable. Craigville Beach is a public beach owned and managed by Barnstable, situated in the central part of the Centerville Harbor bight. The 3.5-acre Craigville Beach parking lot landfall site has been developed through engineering design work, stakeholder engagement, and permit applications. All local, regional, and state permitting authorities have approved this landfall site. Upon completion of construction, the only visible components of the offshore-to-onshore cable transition will be two or three manhole covers within the parking lot. Necessary work at this site will be performed in the non-summer months to minimize disruption to Barnstable residents and visitors. The conceptual site plan for the landfall site is provided in Figure 6.1-5. More details on the landfall site design work can be found in Section 8.

Figure 6.1-5 New England Wind 1 Landfall Site Plan
New England Wind 2

The three New England Wind 2 offshore export cables are proposed to transition onshore via HDD beneath the parking lot at Dowses Beach in Barnstable. Dowses Beach is a public beach for Barnstable residents only and is owned and managed by Barnstable. The 2.5-acre Dowses Beach parking lot can accommodate the installation of all three offshore export cables via HDD, provide for the shortest onshore export cable route, and avoid the use of multiple onshore export cable routes. These factors minimize environmental impacts. Current design of the preferred landfall site also allows for partial beach access to be maintained during the majority of construction, which will occur in the non-summer months at the request of Barnstable to minimize disruption to resident beachgoers. Like New England Wind 1, the only visible components of the offshore-to-onshore cable transition after construction will be manhole covers within the parking lot. The conceptual site plan for the landfall site is provided in Figure 6.1-6.

Figure 6.1-6 New England Wind 2 Preferred Landfall Site Plan

6.1.3.2 **Onshore Substation Sites**

New onshore substations for New England Wind 1 and New England Wind 2 are required to step up voltage from 275 kV to 345 kV in preparation for interconnection at the existing West Barnstable Substation. The onshore substation sites for New England Wind 1 and New England Wind 2 are described below.
New England Wind 1

The New England Wind 1 onshore substation will be constructed off Shootflying Hill Road in Barnstable. Avangrid owns 1.25 acres and has secured an option to purchase the remaining 6.7-acre privately-owned parcel to have full site control. The New England Wind 1 onshore substation site is located southwest of the intersection of Route 6 and Route 132, approximately 0.8 mi east of the West Barnstable Substation. The onshore substation site is currently a commercial use, has frontage on Shootflying Hill Road, and direct access to utility right-of-way (ROW) #343. The New England Wind 1 onshore substation site plan is shown in Figure 6.1-7.

New England Wind 2

The New England Wind 2 onshore substation site will be located adjacent to Route 6 westbound, west of Oak Street near the Oak Street Bridge overpass of Route 6 in Barnstable. This site is just 0.25 mi from the West Barnstable Substation.
6.1.3.3 Onshore Export Cable Routes

New England Wind 1

The onshore export cable route for New England Wind 1 begins in the Craigville Beach parking lot and almost entirely follows public roadways in Barnstable for 4 mi to the New England Wind 1 onshore substation site on Shootflying Hill Road (see Figure 6.1-3). The onshore export cables will be encased within a duct bank that is installed beneath the road. The cable route proceeds from the Craigville Beach parking lot to Craigville Beach Road, then continues north on Main Street to Old Stage Road before crossing Route 28 and following Shootflying Hill Road. From Shootflying Hill Road, the route turns southeast onto ROW #343 before reaching the New England Wind 1 onshore substation.

The route includes a segment along Craigville Beach Road that necessitates a crossing of the Centerville River, which will be accomplished via microtunnel beneath the river. The conceptual design of the Centerville River crossing is included below as Figure 6.1-10.

New England Wind 2

The preferred onshore export cable route for New England Wind 2 is located entirely within public roadway layouts or within the existing parking lot at Dowses Beach. The total length of the preferred
onshore export cable route is approximately 6.7 mi (see Figure 6.1-4). The route begins in the paved parking lot at Dowses Beach and proceeds in a northwesterly direction along the existing paved causeway to East Bay Road. From there, the route turns northwest onto Wianno Avenue, then onto Main Street, Osterville-West Barnstable Road, and Old Falmouth Road. The route then turns and continues in a northeast direction, following Old Falmouth Road to Old Stage Road and on to the Oak Street intersection. Heading north, the route follows Oak Street before turning west onto Service Road, and then continuing to a staging area for an underground crossing of Route 6 into the onshore substation site.

In addition to the preferred onshore export cable route, Avangrid has carried an alternative route for New England Wind 2 throughout the permitting process to maintain some flexibility in design and meet permitting requirements established by the Massachusetts Energy Facilities Siting Board (EFSB). This alternative route is similarly located entirely within public roadway layouts or within the existing parking lot at Dowses Beach. Both the preferred and alternative onshore export cable routes are shown in Figure 6.1-4.

An underground crossing beneath Route 6 is required to connect the onshore export cables to the onshore substation. The Route 6 crossing will be accomplished via microtunnel, avoiding any impacts to the road. An indicative and conceptual design of the Route 6 crossing using the microtunnel approach is depicted in Figure 6.1-11.
6.1.3.4 Grid Interconnection Routes

New England Wind 1

The grid interconnection route for New England Wind 1 is 0.7 mi long and is located entirely within existing utility ROWs. The route begins on the south side of the onshore substation site, entering ROW #343 for 0.1 mi before turning southwesterly onto ROW #345. The route follows ROW #345 for approximately 0.5 mi before turning northwesterly onto ROW #381 and entering parcel #214-001, located immediately southeast of the West Barnstable Substation, before entering the West Barnstable Substation parcel. A short segment of the route along ROW #381 includes a crossing of Route 6, which will be accomplished via pipe jacking. The New England Wind 1 grid interconnection route is shown in Figure 6.1-12.

New England Wind 2

The preferred grid interconnection route for New England Wind 2 is approximately 0.4 mi long and includes installing the grid interconnection cables within the existing access road off Oak Street, then north along Oak Street, then into the northern portion of the West Barnstable Substation parcel. This route will exit from the east side of the onshore substation site. The buried duct bank will then cross two additional parcels, owned by Barnstable and the Barnstable Fire District, before reaching Oak Street. The preferred grid interconnection route is depicted in Figure 6.1-13.
6.1.3.5 Point of Interconnection

Both New England Wind 1 and New England Wind 2 will interconnect at the West Barnstable Substation owned and operated by Eversource. Some modifications to the West Barnstable Substation will be necessary to accommodate interconnection of the Projects. All work at the West Barnstable Substation will be performed by Eversource, although Avangrid is consulting with Eversource on the specific design and location of these modifications.

6.2. Property Rights

Identify any real property rights (e.g., fee-owned parcels, rights-of-way, development rights or easements or leases, or options to purchase or lease) that provide the right to use the Eligible Facility site and Offshore Delivery Facilities locations including for Eligible Facilities and any rights of way needed for interconnection.

- Does the project have a right to use the Eligible Facility site and/or Offshore Delivery Facilities locations for the entire proposed term of the PPA (e.g., by virtue of ownership or land development rights obtained from the owner)?

Yes ☒ No ☐ If not, please explain:

- If so, please detail the Bidder’s rights to control the Eligible Facility site and/or Offshore Delivery Facilities and interconnection locations.
As described in the section below, Avangrid has secured most of the real property rights, or has instruments to obtain real property rights, required for the Projects. Any remaining real property rights will be acquired in line with the schedule provided in
Section 9. Table 6.2-1 and Table 6.2-2 provide the status of key real property rights required to construct and operate New England Wind 1 and New England Wind 2.

Table 6.2-1 Status of Real Property Rights Acquisition – New England Wind 1

<table>
<thead>
<tr>
<th>Property Right Required</th>
<th>New England Wind 1 Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible Facility Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to Install Project Components in Lease Area OCS-A 0534</td>
<td>Secured</td>
<td>Avangrid has a federal lease for Lease Area OCS-A-0534 (see Attachment 6.2-1, Attachment 6.2-2, Attachment 6.2-3, and Attachment 6.2-4) and has filed a Construction and Operations Plan (COP) for phased development of the entire Lease Area.</td>
</tr>
<tr>
<td>Offshore Export Cable Route</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portion Located in Federal Waters</td>
<td>Anticipated with COP Approval</td>
<td>Easements to install and locate the offshore export cables in federal waters are granted at the issuance of COP approval by BOEM, as is permitted in the lease agreement per U.S.C. § 585.200(b).</td>
</tr>
<tr>
<td>Portion Located in State Waters</td>
<td>Secured</td>
<td>A Chapter 91 license permitting offshore export cabling in state waters has been issued by the Massachusetts Department of Environmental Protection (MassDEP). See Attachment 7.2-3.</td>
</tr>
<tr>
<td>Property Right Required</td>
<td>New England Wind 1 Status</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Onshore Export Cable Route</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landfall Site</td>
<td>Highly Likely to Secure</td>
<td></td>
</tr>
<tr>
<td>Barnstable Public Roadways</td>
<td>Highly Likely to Secure</td>
<td></td>
</tr>
<tr>
<td>Centerville River Crossing</td>
<td>Secured</td>
<td>A Chapter 91 license has been issued by MassDEP (See Attachment 7.2-3). Avangrid has also purchased a parcel at 2 Short Beach Road to facilitate this crossing (see Attachment 6.2-5).</td>
</tr>
<tr>
<td>Utility ROW</td>
<td>Highly likely to secure</td>
<td></td>
</tr>
<tr>
<td>Onshore Substation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onshore Substation Property and Site Access</td>
<td>Secured</td>
<td>Avangrid has purchased a property at 6 Shootflying Hill Road and has an option to purchase agreement with the owner of 8 Shootflying Hill Road, providing full site control of the onshore substation site (see Attachment 6.2-6 and Attachment 6.2-7).</td>
</tr>
<tr>
<td>Grid Interconnection Route</td>
<td>Highly likely to secure</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.2-2 Status of Real Property Rights Acquisition – New England Wind 2

<table>
<thead>
<tr>
<th>Property Right Required</th>
<th>New England Wind 2 Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible Facility Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to Install Project Components in Lease Area OCS-A 0534</td>
<td>Secured</td>
<td>Avangrid has a federal lease for Lease Area OCS-A-0534 (see Attachment 6.2-1, Attachment 6.2-2, Attachment 6.2-3, and Attachment 6.2-4) and has filed a COP for phased development of the entire Lease Area.</td>
</tr>
</tbody>
</table>

Offshore Export Cable Route

<table>
<thead>
<tr>
<th>Portion Located in Federal Waters</th>
<th>Anticipated with COP Approval</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Easements to install and locate the offshore export cables in federal waters are granted at the issuance of COP approval by BOEM, as is permitted in the Lease Agreement per U.S.C. § 585.200(b).</td>
</tr>
</tbody>
</table>

Onshore Export Cable Route
<table>
<thead>
<tr>
<th>Property Right Required</th>
<th>New England Wind 2 Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Onshore Substation
6.2.1 Offshore Property Rights

6.2.1.1 Eligible Facility Site

Avangrid has the right to use the Eligible Facility site and portions of the Offshore Delivery Facilities for the entire term of the PPAs. Vineyard Wind LLC, legal predecessor to Vineyard Wind 1 LLC, executed a Lease Agreement for Lease Area OCS-A 0501 with BOEM in 2015 for the purpose of offshore wind energy generation development on the Outer Continental Shelf (see Attachment 6.2-1 and Attachment 6.2-2). In June 2021, the Lease Area was segregated from Lease Area OCS-A 0501. A letter from BOEM outlined the segmentation in detail (Attachment 6.2-3). In December 2021, the Lease Area was reassigned to Park City Wind LLC, a wholly owned subsidiary of Avangrid Renewables, LLC (see Attachment 6.2-4). Avangrid has full ownership interest of Lease Area OCS-A 0534, which is the location of New England Wind 1 and New England Wind 2.

The Lease Agreement provides Avangrid the mechanism to build and operate offshore wind projects within the Eligible Facility site and to install the related necessary grid connection system within federal waters. It also allows for commercial operation of the Projects for a period of at least 30 years. To exercise its right to build and operate the Projects, Avangrid is required to obtain approval through the federal permitting process, which is further described in Section 7. This process includes submission of a COP to BOEM, along with submission of a Facilities Design Report (FDR) and Fabrication and Installation Report (FIR). The New England Wind COP for the Projects was submitted in July 2020 and approval of the New England Wind COP is anticipated in July 2024. Additional details about the federal permitting schedule can be found in Section 7. As required by BOEM’s regulations, the FDR and FIR will be submitted following approval of the New England Wind COP and final design of New England Wind 1 and New England Wind 2.

6.2.1.2 Offshore Export Cables

Avangrid’s Lease Agreement with BOEM also provides the right to obtain one or more easements in federal waters for the purpose of installing and using offshore export cables. As described above, to exercise this right, Avangrid must obtain approval through the federal permitting process described in Section 7. The portions of the offshore export cable routes within state waters for New England Wind 1 and New England Wind 2 are subject to review and permitting at the state, regional, and local levels.

Offshore Export Cable Route in Federal Waters

Per U.S.C. § 585.200(b), Avangrid is entitled to one or more easements in which to locate the offshore export cables in federal waters as needed to enable grid connection for Offshore Wind Energy Generation Facilities located in the Lease Area. The easements will be issued upon approval of the New England Wind COP and will be recorded as an addendum to the Lease Agreement for Lease Area OCS-A 0534. The width of the easement will be determined as part of the New England Wind COP approval process; Avangrid uses offshore export cable routes that are substantially similar to the approved offshore export cable route used for Vineyard Wind 1.

Offshore Export Cable Route in State Waters

For the portions of the offshore export cable routes occurring in state waters, permission to locate the offshore export cables is granted through a license issued by MassDEP pursuant to M.G.L. c. 91 and 310 C.M.R. 9.00 (Chapter 91 license). The Chapter 91 license for New England Wind 1 has been secured.
For New England Wind 2, MassDEP would issue the license after the conclusion of the EFSB and Massachusetts Environmental Policy Act review processes, which are well underway. See Section 7 for additional details.

6.2.2 Onshore Property Rights

6.2.2.1 Landfall Sites and Onshore Export Cable Routes

New England Wind 1

The rights to install the onshore export cables beneath public beaches and roads are granted by Barnstable. Such permissions are legally required by HCA-2, which includes Barnstable support for obtaining all local permits. Barnstable has successfully petitioned the Massachusetts Legislature for Article 97 relief to grant an underground easement on protected land at Craigville Beach where the HDD trajectory will pass beneath the beach and into the paved parking lot. The Barnstable Town Council has voted to grant these easements. Additionally, Avangrid has executed its option to purchase a critical parcel at 2 Short Beach Road for the Centerville River crossing. The 0.28-acre parcel is the location for the microtunnel jacking shaft and staging area for installing transmission cable underneath the Centerville River (see Attachment 6.2-5).

New England Wind 2

6.2.2.2 Onshore Substation Sites

New England Wind 1

Avangrid has an option to purchase the privately owned parcel at 8 Shootflying Hill Road in Barnstable for the New England Wind 1 onshore substation site (see Attachment 6.2-7). 8 Shootflying Hill Road is an approximately 6.7-acre parcel. Avangrid owns the parcel at 6 Shootflying Hill Road (see Attachment 6.2-6), a 1.25-acre, triangular, wooded parcel located directly northeast of 8 Shootflying Hill Road. These two parcels comprise the onshore substation site (see Figure 6.1-7). The New England
Wind 1 onshore substation design will utilize 6 Shootflying Hill Road for the site access road to the substation, which will improve access to the site while allowing the Project to reduce the grade at the site by up to 10 ft, thereby minimizing impacts from the need to import fill to the site to raise the site grade, as was contemplated by the initial substation design.
6.2.2.3 Grid Interconnection Routes

New England Wind 1
The New England Wind 1 onshore substation site on Shootflying Hill Road will interconnect to the grid at the West Barnstable Substation on Oak Street, via two 345 kV onshore transmission circuits contained within an underground duct bank. This interconnection route is less than one mile in length and will be installed within existing utility ROWs and an Avangrid-owned parcel.

New England Wind 2

6.3. Zoning and Permitting

Provide evidence that the Eligible Facility site and Offshore Delivery Facilities and interconnection locations are properly zoned or permitted. If the Eligible Facility site and Offshore Delivery Facilities and interconnection locations are not currently zoned or permitted properly, identify present and required zoning and/or land use designations and permits and provide a permitting plan and timeline to secure the necessary approvals.

Detail the zoning and permitting issues: See below and Section 7.

Permitting plan and timeline:

New England Wind 1
Start Date: Q2 2020 End Date: Q3 2024

New England Wind 2
Start Date: Q2 2020 End Date: Q2 2026
Avangrid remains the most experienced offshore wind developer in the US. In 2019, Avangrid’s Vineyard Wind 1 joint venture project—the nation’s first commercial-scale offshore wind project—obtained all local, regional, and state permit approvals. In early 2021, the federal permitting process for Vineyard Wind 1 concluded, pioneering a successful permitting and environmental assessment approach. With onshore construction complete and offshore construction well underway, Avangrid has demonstrated the ability to construct an offshore wind project in compliance with its permits. Vineyard Wind 1 will continue to provide a blueprint for other projects to follow. Based on Avangrid’s experience with Vineyard Wind 1 and New England Wind 1 thus far, Avangrid is confident in its ability to obtain the required zoning approvals and permits in line with the schedules provided in Section 9.

6.3.1 Zoning

6.3.1.1 Eligible Facility Site
The Lease Area is entirely in federal waters and is subject only to federal jurisdiction. Thus, there are no zoning requirements for the Eligible Facility site.

6.3.1.2 Offshore Export Cable Routes
The offshore export cables for each Project are not subject to zoning requirements.

6.3.1.3 Onshore Export Cable Routes
The onshore cables for both Projects will be located entirely in Barnstable. Avangrid filed petitions for exemptions from local zoning for the underground onshore export cables for both New England Wind 1 and New England Wind 2 with the Massachusetts Department of Public Utilities (DPU) pursuant to M.G.L. c. 40A, § 3. DPU granted such zoning exemptions for New England Wind 1 in December 2023. Avangrid is confident that these requests will also be granted for New England Wind 2. The petitions filed for New England Wind 2 are included Attachment 6.3-1.

6.3.1.4 New England Wind 1 Onshore Substation
The New England Wind 1 onshore substation site consists of two parcels located at 6 and 8 Shootflying Hill Road within an area zoned as residential under Barnstable’s zoning bylaw. However, the EFSB has granted all major zoning exemptions under M.G.L. c. 40A, § 3 for New England Wind 1. The 6 Shootflying Hill Road parcel, owned by Avangrid, is primarily an undeveloped wooded lot which will be utilized for site access. 8 Shootflying Hill Road, for which Avangrid has an option to purchase, currently consists of a motel building and paved parking areas on the northern part of the parcel and wooded land to the south.

6.3.1.5 New England Wind 2 Onshore Substation
Avangrid adopted state-of-the-art measures to contain dielectric fluid within the substation sites for Vineyard Wind 1 and New England Wind 1, along with other suggestions from Barnstable and the community, and is fully prepared to implement the same or similar measures for New England Wind 2. These measures include a combination of design elements and mitigation methods at the onshore substation site, including using best available containment design, comprehensive stormwater management, utilizing visual screens and vegetative buffers, building full fluids containment into the substation civil works, and positioning or containing noise sources and using low-noise designs, when available.

As is typical for electric transmission projects in Massachusetts, and as described above, Avangrid filed a request with the DPU pursuant to M.G.L. c. 40A, § 3 to obtain an exemption from local zoning requirements for New England Wind 2 in November 2022 (see Attachment 6.3-1). Exemptions are frequently granted, as was the case for New England Wind 1, and Avangrid believes the New England Wind 2 onshore substation meets the standards for obtaining necessary zoning exemptions under that authority. The granting of an exemption would also protect the Projects from the application of vague or ambiguous zoning provisions or appeals that could cause delays in the future.

6.3.2 Permitting

As described in Section 7, permitting for New England Wind 1 is nearly complete and permitting for New England Wind 2 is well underway. An overview of the permitting plan and timeline to secure necessary approvals for the Projects is provided herein.

6.3.2.1 Eligible Facility Site

The Eligible Facility Site is governed by Avangrid’s Lease Agreement with BOEM for Lease Area OCS-A 0534. The Lease Agreement provides Avangrid the mechanism to build and operate offshore wind energy generation facilities within the Lease Area and to install the related necessary grid connection system within federal waters. As discussed in Section 7, the federal permitting and approval process under BOEM includes submission of a COP, along with submissions of an FDR and FIR. BOEM issued the Final Environmental Impact Statement4 for the Projects on March 1, 2024, and has committed to issuing the ROD on April 1, 2024 and New England Wind COP approval on July 1, 2024. The FDR and FIR will be submitted following New England Wind COP approval and final design of the Projects.

6.3.2.2 Offshore and Onshore Export Cable Route

The export cable routes for the Projects, including both offshore and onshore elements, are described in Sections 6.1 and 6.2. The offshore portions of the export cable route occurring in federal waters are subject to approval in line with the federal permitting process described immediately above. Massachusetts, regional, and local approvals are required for the portions of the offshore export cable route occurring in state waters and onshore export cable route, as described in Section 7.

6.3.2.3 Onshore Substation

The onshore substations are subject to EFSB review and approval as well as Barnstable-level review (e.g., building permits). EFSB approval for New England Wind 1 was obtained in December 2023 (see Attachment 7.2-2). Avangrid has initiated the permitting process for the onshore substation for New England Wind 2 according to the timeline provided in Section 7.

New England Wind 1 has permits for its onshore cables and onshore substation.

6.3.3 Permitting Plan and Timeline

New England Wind 1 and New England Wind 2 are very mature from a permitting standpoint, especially New England Wind 1, which has all state, regional, and local permits. With respect to federal permitting, BOEM issued the Final Environmental Impact Statement for the New England Wind COP on March 1, 2024, and has committed to approving the New England Wind COP on July 1, 2024. This major milestone will effectively conclude federal permitting of the Projects. Remaining state, regional, and local approvals for New England Wind 2 are expected to be in hand by Q2 2026. More about the permitting plans and timelines for the Projects are provided in Section 7 and Section 9.

6.4. Site Description

Provide a description of the area surrounding the Eligible Facility site and Offshore Delivery Facilities and interconnection locations (including landfall), including a description of the local zoning, flood plain information, existing land or waterway use, and setting.

6.4.1 Eligible Facility Site Location

The Eligible Facility site is in Lease Area OCS-A 0534 in federal waters in the Atlantic Ocean. The Lease Area comprises 101,590 acres and is approximately 10 mi wide and over 18 mi long. The nearest WTG position is approximately 20 mi south of Martha’s Vineyard and 24 mi southwest of Nantucket. New England Wind 1 will be in the northern portion of the Lease Area and New England Wind 2 will be in the southern portion. The Lease Area is adjacent to three other federal offshore wind energy lease areas: OCS-A 0501 (location of Vineyard Wind 1), OCS-A 0500, and OCS-A 0520. As the Eligible Facility site is located beyond state territorial waters, there are no local zoning, flood plain, or existing land use details to provide.

6.4.2 Offshore Delivery Facilities

The Offshore Delivery Facilities locations for the Projects include the following:

- The offshore export cable routes from the Eligible Facility site through federal and state waters;
• The landfall site for New England Wind 1 at the Craigville Beach parking lot and for New England Wind 2 at the Dowses Beach parking lot, both in Barnstable;
• Onshore export cable routes under public roadway layouts in Barnstable and within existing utility ROWs;
• Onshore substation sites in Barnstable; and
• Grid interconnection routes from the onshore substations to the West Barnstable Substation.

6.4.2.1 Offshore Export Cable Routes

Based upon careful consideration of multiple technical, environmental, and commercial factors, Avangrid identified offshore export cable routes for New England Wind 1 and New England Wind 2 that are substantially similar to the Vineyard Wind 1 offshore export cable route. The Projects share an OECC that is 96% common. All offshore export cables will travel from the northwestern corner of Lease Area OCS-A 0534 and along the northwestern edge of Lease Area OCS-A 0501 (through Vineyard Wind 1). The offshore export cable route then heads through Muskeget Channel towards the landfall sites on the western side of Barnstable (see Figure 6.1-2).

The offshore export cable routes provide for efficient, technically feasible connection of the ESPs to the POI in West Barnstable. Considering the POI, and adjacent lease areas, the most suitable route for the offshore export cables to shore is from the northwestern corner of the Lease Area. Avangrid evaluated multiple route options when siting the offshore export cable route for Vineyard Wind 1 and determined that the onshore export cable route selected for that project would result in fewer impacts than the other alternatives evaluated, less electrical line losses, and lower installation and operational costs. Accordingly, using substantially similar offshore export cable routes within the same OECC as Vineyard Wind 1 provides a proven and permittable route from the Lease Area to the POI.

The geological conditions within the OECC are also well understood, and site geological conditions are suitable for cable installation, as evidenced by the successful installation of Vineyard Wind 1 export cables. Avangrid has a large amount of survey data and a robust understanding of the offshore export cable route in terms of potential environmental impacts and construction feasibility from the OECC survey work completed for Vineyard Wind 1. Avangrid has, for example, already gathered thousands of nautical miles of geophysical trackline data and hundreds of vibrocores, cone penetrometer tests, benthic grab samples with still photographs, and underwater video transects that support the characterization of the OECC. Avangrid has assessed the offshore export cable route for installation feasibility, which includes ensuring that water depths are suitable for fully loaded cable installation vessels, slopes are workable for typical cable installation tools, sufficient room is available for anchoring, etc. Based on these detailed geotechnical and installation feasibility analyses, Avangrid has determined that installation in the identified offshore export cable route is suitable and feasible.

Moreover, the use of a shared OECC with Vineyard Wind 1 minimizes potential environmental impacts by limiting disturbance to a single corridor and provides an opportunity to maintain cables more efficiently.

6.4.2.2 New England Wind 1 Landfall Site

The two New England Wind 1 offshore export cables will transition onshore via HDD beneath the parking lot at Craigville Beach in Barnstable. Avangrid explored several landfall sites and after a due
diligence process, selected the Craigville Beach parking lot as the landfall site. This site was preferred given its favorable egress and inland routing to the West Barnstable Substation via public roadways and an existing utility ROW.

The landfall site is within a 3.5-acre paved parking area at Craigville Beach, a public beach owned and managed by Barnstable. Craigville Beach is situated in Centerville Harbor. Existing uses in and around the landfall site include recreational use of the beach area, seasonal residential use, and recreational boating in the Centerville Harbor area to the south of Craigville Beach. At Craigville Beach, the offshore export cables offshore-to-onshore transition will be made using HDD. From Craigville Beach, the onshore export cables would continue beneath public roadway layouts. The parking area at Craigville Beach has adequate space for an HDD staging area and favorable route options to the onshore substation site. The landfall site at Craigville Beach is in a velocity zone (VE elev. 14 and 15), as established by the Federal Emergency Management Agency.

6.4.2.3 New England Wind 2 Landfall Site

New England Wind 2 offshore export cables will transition onshore in Barnstable. As previously mentioned, several potential landfall site options in Barnstable were investigated for New England Wind 2 prior to selecting the Dowses Beach parking lot as the preferred landfall site. Initial route screening included a broad assessment to identify potential landfall sites where the transition from offshore cables to onshore cables could occur.

Initially, more than 50 possible landfall sites were identified along the southern coast of Cape Cod and on the east coast of Buzzards Bay. These initial landfall sites were reviewed in the context of cable length limitations and proximity to potential POIs. They were then evaluated and graded based on the availability of adequate workspace, adjacent environmental resources, and sufficient inland egress to a suitable POI. Avangrid completed additional engineering, environmental, and constructability evaluations for each potential landfall site within the area of focus.

After a careful and iterative evaluation process, the 2.5-acre parking lot at Dowses Beach (owned and managed by Barnstable) was selected as the most suitable landfall site for New England Wind 2. The parking lot is situated on a peninsula between East Bay and Centerville Harbor, away from nearby residences. At Dowses Beach, the offshore-to-onshore transition of the export cables would be made using HDD, with construction and installation proposed entirely within paved surfaces to mitigate impacts to the surrounding environment. The parking lot at Dowses Beach has adequate space for an HDD staging area and favorable route options to the onshore substation site. The landfall site at Dowses Beach is within a velocity zone (VE elev. 14 and 15), as established by the Federal Emergency Management Agency. The initial section of the onshore export cable route in East Bay Road falls within a still-water flood zone (AE elev. 13). From Dowses Beach, the onshore export cables would continue beneath public roadway layouts.

6.4.2.4 New England Wind 1 Onshore Export Cable Route

Avangrid has selected and permitted an onshore export cable route from the New England Wind 1 landfall site to the New England Wind 1 onshore substation. The approximately 4-mi route from the landfall site to the onshore substation is almost entirely located under publicly owned roadway layouts with the exception of a trenchless crossing of the Centerville River and a short section of utility ROW. The transmission route begins in the paved parking lot at Craigville Beach and then proceeds
generally north on Craigville Beach Road for approximately 0.5 mi through moderate-density residential areas, then continues north on Main Street for approximately 0.5 mi through more developed, mixed residential and commercial areas. Continuing north on Old Stage Road in Centerville Village for approximately 0.7 mi through mixed residential and commercial areas, the route passes through the Centerville Historic District. The route then crosses Route 28 and follows Shootflying Hill Road for approximately 2.1 mi through moderate-density residential areas before turning southeast onto ROW #343 for the final approximately 0.2 mi to the onshore substation site, where voltage will step up to 345 kV in preparation for interconnection with the existing electrical grid. The onshore export cable route is depicted in Figure 6.1-3.

6.4.2.5 New England Wind 2 Onshore Export Cable Route

The preferred onshore export cable route from the New England Wind 2 preferred landfall site to the onshore substation is an approximately 6.7-mi route located entirely within public roadway layouts or within the existing paved parking lot area at Dowses Beach. The route begins underneath the paved parking lot at Dowses Beach and proceeds generally west under the existing paved causeway to East Bay Road. From there, the route proceeds approximately 0.2 mi in a southerly direction underneath East Bay Road. At the end of East Bay Road, the route turns northwest under Wianno Avenue, which it follows for approximately 0.9 mi to Main Street. The route continues north under Main Street for approximately 1.1 mi to Osterville-West Barnstable Road, which it then follows for approximately 1.9 mi to Old Falmouth Road. The route then turns and continues in a northeast direction and follows Old Falmouth Road for approximately 0.9 mi, then turns eastward under Old Stage Road for approximately 0.2 mi to the Oak Street intersection. Turning north under Oak Street, the route follows Oak Street for approximately 1 mi before turning west under Service Road and continuing another 0.2 mi to a staging area to the proposed trenchless crossing of Route 6 into the onshore substation site. The preferred onshore export cable route is depicted in Figure 6.1-4.

The alternative onshore export cable route, which has also been included in all permit filings for flexibility, is a 6.6-mi route that proceeds along roads generally east of the preferred onshore export cable route until the two routes converge at Osterville-West Barnstable Road. The alternative onshore export cable route is depicted in Figure 6.1-4.

6.4.2.6 New England Wind 1 Onshore Substation

The New England Wind 1 onshore substation site is located at 6 and 8 Shootflying Hill Road within an area zoned as residential under Barnstable’s zoning bylaw. 8 Shootflying Hill Road, which will contain all of the substation equipment, is an approximately 6.7-acre parcel southwest of the intersection between Route 6 and Route 132 and is located less than 1 mi east of the POI at the West Barnstable Substation. The substation parcel is bordered to the north by Shootflying Hill Road, to the east by land owned by MassDOT, to the south by Eversource ROW #343, which leads to the West Barnstable Substation, and to the west by residential parcels. The northern part of this parcel currently contains a motel building and parking lot, and the southern part consists of wooded land.

6 Shootflying Hill Road is an undeveloped wooded lot abutting the northeastern edge of 8 Shootflying Hill Road and will be utilized for site access. Avangrid purchased 6 Shootflying Hill Road in 2023.
6.4.2.7 New England Wind 2 Onshore Substation

The New England Wind 2 onshore substation site is located west of Oak Street near the Oak Street Bridge overpass of Route 6, approximately 0.25 mi west of the POI at the West Barnstable Substation.

6.4.2.8 New England Wind 1 Grid Interconnection Route

From the New England Wind 1 onshore substation site to the West Barnstable Substation, the grid interconnection route spans approximately 0.7 mi, and the route is located entirely within existing utility ROWs. The route follows Eversource ROW #343 for less than 0.1 mi, then ROW #345 for approximately 0.5 mi, finishing on ROW #381 for less than 0.2 mi, where it crosses Route 6 and enters Parcel #214-001, a parcel of land located immediately southeast of the West Barnstable Substation that is owned by Avangrid (See Attachment 6.4-1), before entering the substation site.

6.4.2.9 New England Wind 2 Grid Interconnection Route

The preferred grid interconnection route is approximately 0.4 mi long and includes installation of the grid interconnection cables in a buried duct bank within the existing access road off Oak Street, then north along Oak Street, then into the northern portion of the West Barnstable Substation parcel.
6.5. Interconnection Facility Site Control

If the bidder does not have interconnection facilities site control describe the status of the plan to obtain that control.

The offshore and onshore interconnection paths for the Projects from the Lease Area to the ISO-NE pool transmission facility (PTF) node are illustrated in the site plans provided in Section 6.1 and Attachments 6.1-3 and 6.1-4. The site control plans are currently being implemented, with several critical permissions already granted or obtained, and with the remaining having clear and highly likely paths to securing (see Section 6.2 through Section 6.4).

6.6. Interconnection Requests

Please provide documentation to show evidence of the interconnection request to ISO-NE, the applicable New England Transmission Owner, or any neighboring control areas, to interconnect at the Capacity Capability Interconnection Standard. Please describe the status of any planned interconnection to the grid.

Avangrid engaged grid connection planners and modelers in 2016 to investigate optimal grid connection strategies for offshore wind projects in Lease Area OCS-A 0501, which included the area now known as Lease Area OCS-A 0534. Resulting studies analyzed the technical and permitting constraints of various grid POIs as well as route options to access these grid POIs. This planning identified West Barnstable Substation as the preferred POI to a PTF node for potential future projects.

Since completing these evaluations, interconnection requests have been filed and ISO-NE system impact studies have progressed and continue to demonstrate the viability of connecting offshore wind energy to the New England region. These requests secure interconnection capacity to support the build-out of the Projects, while also minimizing interconnection risk and optimizing grid interconnection for the Projects. Avangrid's interconnection requests for the QPs to be utilized for the Projects are described below.

New England Wind 1 and New England Wind 2 have successfully completed the SIS processes and the associated SIS reports fulfill the requirements for the ISO-NE Proposed Plan Action approval under Section 1.3.9 of the ISO-NE Tariff.

6.6.1 New England Wind 1
6.6.2 New England Wind 2
6.7. Joint State Innovation Partnership for Offshore Wind

Please describe how the project aligns with the transmission system goals of the Joint State Innovation Partnership for Offshore Wind.

Avangrid supports the goals of the Joint State Innovation Partnership for Offshore Wind and acknowledges the potential for “meshed” multi-terminal high voltage direct current (MTDC) systems to enhance energy reliability and resiliency while generating meaningful cost benefits to all future offshore wind resources connecting to New England transmission grid.

6.8. Electrical System Performance

Provide studies that describe the Project’s electrical system performance, its impact to the reliability of the New England Transmission system, how the project would satisfy ISO-NE’s I.3.9 requirements, and how the project will interconnect at an equivalent to the Capacity Capability Interconnection Standard. Projects that do not have I.3.9 approval from ISO-NE must include technical reports or system impact studies that approximate the ISO-NE interconnection process, including but not limited to clear documentation of study technical and cost assumptions, reasoning, and justification of such assumptions. All projects must also provide analysis that approximates the ISO-NE CCIS interconnection analysis as defined in Planning Procedure 10. Please also provide the status and expected completion date of any additional interconnection studies already underway with ISO-NE and/or the transmission owner. All studies must follow the current ISO-NE interconnection procedures and detail any assumptions regarding resources ahead of the Project in the ISO-NE interconnection queue. All network upgrades identified in these studies must be clearly
New England Wind 1 and New England Wind 2 will help increase the fuel diversity of New England’s PTF system by adding local, high-capacity generation built at a substantial scale; the Projects are large enough to make a significant contribution to replacing the capacity and energy output that is being lost by the retirement of traditional baseload power plants. This reliability value is enhanced by the portfolio diversity and delivery location benefits.

6.8.1 Improving System Reliability

As noted in Section 3, these reliability benefits were documented in studies completed for Avangrid (see Section 13). The generation profile of offshore wind can provide additional reliability benefits when the region is experiencing natural gas supply constraints or shortages. New England has faced multiple such shortages in the electricity sector during winter periods over the last decade. Having large, new sources of energy and capacity that are not reliant on natural gas improves system reliability during these critical periods.

6.8.2 System Impact Studies

Avangrid has made significant advancements in the ISO-NE Interconnection Queue process for both Projects. This includes filing valid interconnection requests, providing electrical models of the proposed plants, and substantial completion of the relevant studies conducted by ISO-NE. Relevant milestones applicable to New England Wind 1 and New England Wind 2 are outlined in Section 6.6.

New England Wind 1 and New England Wind 2 I.3.9 and SIS statuses are outlined in the sections below.
6.8.3 1.3.9 Approval

6.8.3.1 New England Wind 1

6.8.3.2 New England Wind 2

Avangrid does not yet have I.3.9 approval from ISO-NE for New England Wind 2.

6.9. Deliverability Constraint Analysis

Please provide documentation of the deliverability constraint analysis set forth in Appendix I to the RFP. Provide a description of the findings of the deliverability constraint analysis, including but not limited to a list of thermal overloads and voltage violations identified.

Attachments:

• Copy of completed deliverability constraint analysis: ☐

• If the deliverability constraint analysis was performed as a portion of a separate study, please explain and provide the study:

Avangrid commissioned a third-party firm, [firm name] to perform a deliverability constraint analysis for each Project, in accordance with Appendix I of the Request for Proposals.

6.9.1 New England Wind 1
6.9.2 New England Wind 2

6.10. Additional Interconnection Requests

If multiple interconnection requests have been made, please specify all such active requests which have not been superseded by subsequent requests and information regarding the status of each. Provide copies of any requests made and studies completed.
6.11. Network Upgrades

Please provide cost estimates for any necessary network upgrades identified in the studies identified in Section 6.7.

6.11.1 New England Wind 1
6.11.2 New England Wind 2

<table>
<thead>
<tr>
<th>Region</th>
<th>Capacity (MW)</th>
<th>Turbine Type</th>
<th>Grid Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>New England</td>
<td>200</td>
<td>Type 1</td>
<td>Substation</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>Type 2</td>
<td>HV Line</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>Type 3</td>
<td>Transformer</td>
</tr>
</tbody>
</table>
6.12. Alternative Interconnection Scenario

To the extent that you provide an alternative interconnection scenario based on ISO-proposed interconnection process changes, you must also include studies using the proposed ISO-NE process. Any such studies must be accompanied with clear documentation of study technical and cost assumptions, reasoning, and justification of such assumptions.

Avangrid fully anticipates using its primary POIs for all interconnection requests and associated QPs as summarized in Table 6.12-1 below.

Table 6.12-1 New England Wind 1 and New England Wind 2 Interconnection

<table>
<thead>
<tr>
<th>Project</th>
<th>Queue Positions</th>
<th>Primary Interconnection Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.13. Electrical Models

Provide the electrical models of all energy resources supporting the proposed project in accordance with the filing requirements of the ISO-NE Tariff Schedule 22 and 23.

Electrical models attached: ☐ If none, please explain:

Electrical models in Siemens Power System Simulation for Engineering (PSSE) and PSCAD models are included for the Projects in the corresponding ISO-NE studies (see Attachment 6.14-1 and Attachment 6.8-1). These models, included in Appendix G of each study, can be provided upon request.

ISO-NE performed the following analyses on the Projects using the submitted electrical models:

- Steady-State Analysis: Including power factor test, collection system analysis, and N-1/N-1-1 voltage and thermal analysis.
- Short-Circuit Analysis: Assessed the impact of the Projects on fault current levels and breaker duty in the area.
- Stability Analysis: Analyzed the impact on transient stability performance of design contingencies in the vicinity of the Projects and to identify violations of ISO-NE stability performance criteria.

Provide a copy of an electrical one-line diagram showing the interconnection facilities, the relevant facilities of the transmission and/or distribution provider, and any required network upgrades identified in the studies required in section 6.9 of this document.

Electrical one-line diagram attached: ☐ If none, please explain:

Electrical one-line diagrams for New England Wind 1 and New England Wind 2 are appended to the SIS Report (Appendix J) and draft CSIS Report (Appendix H), respectively. These appendices can be provided upon request.
Specify and describe the current or new interconnection facilities (lines, transformers, switching equipment, system protection and controls, etc.) that bidder owns or is intending to construct or have constructed in order to deliver the proposed energy.
6.16. Incremental Data Requirements

Incremental data requirements:

- IDV file(s) in PSSE v32 format modeling all upgrades to the transmission network identified in the studies required in section 6.7 of this document. ☐ If none, please explain:

- If the Bidder does not use PSSE, provide in text format necessary modeling data as follows:
 - Line Data:
 - Voltage Thermal Ratings Impedances \((r, X, B)\)
 - Line Length: from to (bus numbers and names)
 - Transformer data (including shifting transformers if applicable): Terminal Voltages Thermal Ratings
 - Impedance: from to (bus numbers and names)
 - Reactive compensation models as necessary
 - Other changes to the model that would occur due to a Project such as terminal changes for lines/transformer/generator leads/loads etc.

For New England Wind 1, PSSE models are included in text format in Appendix G of the SIS Report, which is provided as Attachment 6.14-1. Model files for all QPs can be provided in electronic format upon request.

For New England Wind 2, the PSSE models are provided in text format in Appendix G of the draft CSIS Report, which is provided as Attachment 6.8-1. Model files for all QPs can be provided in electronic format upon request.

6.17. Production/Delivery Profile

Please detail with supporting information and studies (as available) that the production/delivery profile contemplated in your proposal reflects constraints or curtailments, if any, after the upgrades that are expected to take place pursuant to interconnection at an equivalent to the CCIS. If you are planning to make voluntary upgrades beyond those associated with the CCIS-equivalent standard, as more fully described in the RFP, please describe the transmission network upgrades necessary, their estimated cost (for which the bidder would have cost responsibility, and the impact on the proposed generation schedule by reducing remaining constraints or curtailments.

New England Wind 1 and New England Wind 2 will follow ISO-NE procedures under the Open Access Transmission Tariff provisions for resource interconnections, as well as the ISO-NE procedures for evaluation of interconnection requirements for qualification to participate in the Forward Capacity Market. These procedures ensure that a resource can connect to the New England Power Pool.
transmission system without material constraint and ensure that the resource can be fully dispatched.

performed overlapping capacity deliverability analysis with reference to ISO-NE Planning Procedure PP-10, Planning Procedure to Support the Forward Capacity Market on New England Wind 1 (Attachment 6.9-1) and New England Wind 2 (Attachment 6.9-2). The analysis results indicate that there are no major constraints to deliverability of the proposed capacity to the POI for both New England Wind 1 and New England Wind 2. A summary of the results is provided in Table 6.17-1.
7. Environmental Assessment, Permit Acquisition Plan, and Environmental Attributes Certification

This section addresses environmental and other regulatory issues associated with project siting, development and operations for all aspects of the project (including generation, delivery, storage, interconnection, etc.), and in all jurisdictions (federal, all interested states, etc.).

Having completed permitting of Vineyard Wind 1—the nation’s first commercial-scale offshore wind project—Avangrid is one of the most experienced offshore wind developers in the US. Vineyard Wind 1 pioneered a successful permitting and environmental assessment approach, which will continue to serve as a tested blueprint for New England Wind 1 and New England Wind 2 (the Projects). More specifically, with all of its critical state, regional, and local permits already in hand; a signed host community agreement (HCA) with the Town of Barnstable (Barnstable); and federal permitting expected to be complete later this year, New England Wind 1 is undoubtedly the most mature and shovel-ready uncontracted offshore wind project in the region.

The permitting processes for both Projects are well underway with many significant milestones already achieved at the federal, state, regional, and local levels. The Projects are going through a joint permitting process at the federal level, where they are collectively referred to as New England Wind. Avangrid has worked closely with Bureau of Ocean Energy Management (BOEM) staff during their review of the New England Wind Construction and Operations Plan (COP).1 The New England Wind COP details Avangrid’s proposal to develop wind energy facilities as two projects (New England Wind 1 and New England Wind 2) in Lease Area Outer Continental Shelf (OCS) OCS-A 0534 (the Lease Area). The New England Wind COP was originally submitted to BOEM in July 2020. The Draft Environmental Impact Statement (DEIS)2 published on December 23, 2022. BOEM has concluded its environmental review of the Projects and issued a Final Environmental Impact Statement (FEIS)3 on March 1, 2024. BOEM anticipates issuing a Record of Decision (ROD) on April 1, 2024, and approving the New England Wind COP on July 1, 2024.

New England Wind 1 secured its remaining state, local, and regional permits in Q1 2024.4

4 The Energy Facilities Siting Board Final Decision for New England Wind 1 is currently pending appeal.
The Projects have been carefully developed and sited to avoid potential impacts to surrounding communities, including Environmental Justice (EJ) populations and host communities, to the greatest extent practicable. Avangrid’s collaborative community engagement approach and deep involvement in local communities has fostered public support and recognition of the Projects as critical pieces of the Commonwealth’s clean energy transition. Avangrid acknowledges that, like most major infrastructure projects, there is some local opposition to the Projects, specifically regarding the proposed landfall site for New England Wind 2. Avangrid’s well-qualified community outreach team, consisting of several Cape Cod and South Coast locals, has successfully built upon its network of strong relationships developed during the development of Vineyard Wind 1 to ensure the successful permitting of New England Wind 1 and will continue doing the same for New England Wind 2. The voluminous and varied letters of support for the two Projects (provided as Attachment 7.7-2) are evidence of Avangrid’s meaningful and well-rounded stakeholder engagement efforts to date.

Avangrid, with input from key stakeholders, has thoughtfully prepared several plans to construct and operate New England Wind 1 and New England Wind 2 in a responsible and sustainable manner. The Fisheries Mitigation Plan, provided as Attachment 7.4-1, and Fisheries Communication Plan, provided in Attachment 7.4-2, demonstrate Avangrid’s commitment and ability to listen, address concerns when possible, and develop productive working relationships with fisheries stakeholders. The Environmental Mitigation Plan, included as Attachment 7.5-1, outlines Avangrid’s industry-leading efforts to develop environmental protection measures and initiatives that proactively conserve and protect threatened and endangered species.

Avangrid’s years of experience in Massachusetts set the Company apart from other offshore wind developers in the US and lend confidence to the permitting plan set forth in this section. Avangrid’s proven team includes Vineyard Wind 1 veterans and many subject matter experts committed to permitting well-sited offshore wind projects with positive environmental and economic impacts.

7.1. Permits, Licenses, and Environmental Impact Statements

Provide a list of all the permits, licenses, and environmental assessments and/or environmental impact statements required to construct and operate the project.

Along with this list, identify the governmental agencies and States that are responsible for issuing approval of all the permits, licenses, and environmental assessments and/or environmental impact statements. If a bidder has secured any permit or has applied for a permit, please indicate this in the response.

New England Wind 1 and New England Wind 2 are more advanced than any other uncontracted project in the Northeast with regard to permitting. Having worked closely with BOEM staff and other federal agencies since 2017, the team has leveraged its knowledge and resources to progress the federal permitting process for the Projects to near-completion. Similarly, extensive experience with state, regional, and local agencies and permitting authorities in Massachusetts further ensures the successes of New England Wind 1 and New England Wind 2.
Avangrid’s permitting team is supported by a suite of environmental consultants with the experience and expertise required to successfully permit commercial-scale offshore wind projects.

The permitting path for both Projects is similar to that of Vineyard Wind 1. A list of the permits, licenses, and approvals for the Projects is provided in Tables 7.1-1, 7.1-2, and 7.1-3.

7.1.1 Federal Permits and Approvals

New England Wind 1 and New England Wind 2 are covered by the Fixing America’s Surface Transportation Act (FAST-41)\(^5\) to expedite and coordinate the federal permitting process. FAST-41 establishes procedures that standardize interagency consultation and coordination processes, and results in increased accountability to achieve agreed-upon schedules. FAST-41 codified into law the use of the Permitting Dashboard to track project timelines. The schedule on the Permitting Dashboard provides a timeline for the environmental review and permitting processes for the Projects, which are going through a joint federal permitting process that is nearing completion. The major federal permitting processes for New England Wind 1 and New England Wind 2 are expected to conclude on July 1, 2024, when BOEM will approve the New England Wind COP for the Projects.

Table 7.1-1 lists the federal permits, approvals, and consultations required for the Projects and their statuses. The timelines for each permit/approval are discussed in Section 7.2.

Table 7.1-1 Federal Permits and Approvals

<table>
<thead>
<tr>
<th>Agency/Regulatory Authority</th>
<th>Permit/Approval</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOEM</td>
<td>Site Assessment Plan (SAP) approval</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td>COP filing/approval</td>
<td>COP filed with BOEM on July 2, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COP approval anticipated July 1, 2024</td>
</tr>
<tr>
<td></td>
<td>National Environmental Policy Act (NEPA) Environmental Review</td>
<td>Initiated by BOEM on June 30, 2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEIS published on December 23, 2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEIS published on March 1, 2024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROD anticipated April 1, 2024</td>
</tr>
</tbody>
</table>

Table 7.1-1 Federal Permits and Approvals

<table>
<thead>
<tr>
<th>Agency/Regulatory Authority</th>
<th>Permit/Approval</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Environmental Protection Agency (EPA)</td>
<td>Facility Design Report and Fabrication and Installation Report</td>
<td>To be filed (TBF) per project component, beginning Q2 2025</td>
</tr>
<tr>
<td></td>
<td>National Pollutant Discharge Elimination System Permit(s)</td>
<td>TBF approximately three months prior to the start of construction</td>
</tr>
<tr>
<td></td>
<td>OCS Air Permit</td>
<td>Notice of Intent (NOI) submitted January 28, 2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applications filed on October 7, 2022; deemed complete on February 13, 2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Draft permits published December 19, 2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final OCS Air Permits are anticipated in Q2 2024</td>
</tr>
<tr>
<td>US Army Corps of Engineers (USACE)</td>
<td>Clean Water Act (CWA) Section 404 Permit</td>
<td>Applications filed on August 1, 2022; deemed complete and Public Notices published in December 2022</td>
</tr>
<tr>
<td></td>
<td>Rivers and Harbors Act of 1899 Section 10 Individual Permit</td>
<td>Section 10 and Section 404 Permits for New England Wind 1 are anticipated to be issued by July 1, 2024</td>
</tr>
<tr>
<td>US National Oceanic and Atmospheric Administration (NOAA Fisheries)</td>
<td>Letter of Authorization (LOA) or Incidental Harassment Authorization</td>
<td>LOA request Notice of Receipt published in Federal Register on August 22, 2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Published Proposed Incidental Take Authorization (ITA) in Federal Register on June 6, 2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publication of Final ITA anticipated May 31, 2024, with a final ITA decision issued by July 1, 2024</td>
</tr>
<tr>
<td>US Coast Guard (USCG)</td>
<td>Private Aid to Navigation (PATON) authorization</td>
<td>TBF - Assume three months prior to start of offshore construction</td>
</tr>
<tr>
<td>Federal Aviation Administration (FAA)</td>
<td>No Hazard Determination (for activities at construction staging areas and vessel transits, if required)</td>
<td>TBF - Assume three months prior to start of offshore construction</td>
</tr>
</tbody>
</table>
Table 7.1-1 Federal Permits and Approvals

<table>
<thead>
<tr>
<th>Agency/Regulatory Authority</th>
<th>Permit/Approval</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts Office of Coastal Zone Management (MA CZM)</td>
<td>Federal Consistency Determination (15 CFR 930.57)</td>
<td>Review initiated on September 14, 2022 Concurrence issued November 9, 2023</td>
</tr>
<tr>
<td>Rhode Island Coastal Resources Management Council (RI CRMC)</td>
<td>Federal Consistency Determination (15 CFR 930.57)</td>
<td>Review initiated on August 5, 2022 Concurrence issued on October 19, 2023</td>
</tr>
</tbody>
</table>

The sections below summarize the requirements for each of the anticipated federal permits, approvals, and consultations required to construct the Projects.

7.1.1.1 Bureau of Ocean Energy Management

BOEM is the lead federal agency tasked with facilitating responsible development of the Projects. BOEM has jurisdiction under the OCS Lands Act to issue leases, easements, and rights-of-way for the development of renewable energy resources on the OCS. BOEM authorizes offshore wind development on the OCS through its review and approval of a SAP and New England Wind COP.

The SAP describes the initial activities to characterize a site (e.g., installation of meteorological tower and meteorological buoys). Avangrid installed a meteorological-oceanographic (metocean) buoy in Lease Area OCS-A 0501, which has since been segregated into Lease Areas OCS-A 0501 and OCS-A 0534, under an approved SAP in May 2018. The buoy, which was deployed for two years until May 2020, provided critical data to inform the design of and permitting strategies for New England Wind 1 and New England Wind 2. Therefore, this initial step in federal permitting is already complete for both Projects.

In reviewing the New England Wind COP, BOEM complies with its obligations under the NEPA, the National Historic Preservation Act, the Magnuson-Stevens Fishery Conservation and Management Act, the Migratory Bird Treaty Act, the Clean Air Act, Marine Mammal Protection Act, and the Endangered Species Act. BOEM consulted with numerous other federal agencies during its review of the New England Wind COP, including the NOAA Fisheries, the US Fish and Wildlife Service (USFWS), the Environmental Protection Agency, and the USCG. BOEM used the NEPA substitution process for Section 106 consultation under the National Historic Preservation Act and coordinated with state historic preservation offices and engaged in government-to-government consultation with Tribal Nations. BOEM also coordinated with nearby states under the Coastal Zone Management Act to ensure that the Projects are consistent with state-level coastal zone management plans. BOEM also consults with the US Department of Defense (DOD) Siting Clearinghouse during its review of projects.
7.1.1.2 Environmental Protection Agency

OCS Air Permits are required for certain emissions from vessels and equipment use during offshore construction and operation of the Projects. The OCS Air Permits (one for each Project) will contain, at a minimum, emissions limitations, monitoring, testing, and reporting requirements for OCS sources.

7.1.1.3 US Army Corps of Engineers

Section 10 of the Rivers and Harbors Act of 1899 prohibits the unauthorized construction or alteration of any Navigable Waters. A Section 10 permit from the USACE is required for the installation of the wind turbine generators (WTGs), electrical service platforms (ESPs), foundations, the placement of scour protection and cable protection, and the installation of offshore export cables from the mean high-water line to the seaward limit of the OCS.

Section 404 of the CWA requires a permit before dredged or filled material can be discharged into the Waters of the US (within the 3 nautical miles (NM) limit for state territorial waters). A Section 404 permit from the USACE is needed because the installation of offshore export cables may involve the discharge of dredged materials from localized sand wave dredging and because cable installation or cable protection (if needed) could change the seafloor’s bottom elevation. Like BOEM, the USACE must comply with its NEPA, National Historic Preservation Act, Magnuson-Stevens Fishery Conservation and Management Act, Migratory Bird Treaty Act, and Endangered Species Act obligations. However, to avoid duplication of effort, the USACE was a cooperating agency with BOEM through the NEPA process and will adopt the FEIS to meet its obligations.

7.1.1.4 NOAA Fisheries

Incidental take authorization from NOAA Fisheries is necessary for construction, principally because of the potential noise impacts to marine mammals associated with pile driving. Under the Marine Mammal Protection Act, the noise levels associated with construction have the potential to “harass” marine mammals; therefore, authorization is required. The Projects are seeking a LOA to obtain incidental take authorization from NOAA Fisheries.

7.1.1.5 US Coast Guard

The USCG exercises authority over maritime navigation in Waters of the United States pursuant to 33 CFR § 66 (49 U.S.C. § 44718). PATON includes all marine aids to navigation operated in the navigable waters of the US other than those operated by the federal government or those operated in state waters for private aids to navigation. The USCG will issue a PATON approval for installation of the WTGs and ESPs to alert mariners to potential hazards to navigation. The PATON approval will be obtained prior to offshore construction.

7.1.1.6 Federal Aviation Administration/Department of Defense Siting Clearinghouse

The FAA requires a public notice of the proposed construction of a structure that is more than 200 feet (ft) above ground level or within certain distances of airports. While the WTGs for both Projects will be installed outside of the FAA’s jurisdiction (which extends 12 NM from the US coastline), Avangrid will file Notices of Proposed Construction or Alteration for the temporary use or movement of any structures within territorial airspace that exceed 200 ft or any obstruction standard contained in 14 CFR Part 77 during construction of the Projects, including within ports and at construction staging areas. Avangrid will also consult with the US DOD Siting Clearinghouse about radar interference. The
DOD Siting Clearinghouse has a structured formal review process to conduct a mission compatibility evaluation of proposed wind projects.

7.1.1.7 Massachusetts Office of Coastal Zone Management/Rhode Island Coastal Resources Management Council

The Coastal Zone Management Act gives states the authority to review federal actions that affect their coastal uses and/or resources to ensure that such actions are consistent with a state’s federally approved coastal zone management program and policies. The MA CZM and the RI CRMC are responsible for implementing the federal consistency processes for Massachusetts and Rhode Island, respectively. MA CZM has consistency review authority over the Offshore Wind Energy Generation facility, the offshore export cable routes, and onshore portions of the Projects within the Massachusetts coastal zone. The Offshore Wind Energy Generation facility and portions of the offshore export cable routes are located within Rhode Island’s 2018 Geographic Location Description and were therefore subject to federal consistency review by RI CRMC.

7.1.2 State Permits and Approvals

Elements of New England Wind 1 and New England Wind 2 under Massachusetts authority also require review and/or permits from numerous state agencies. Table 7.1-2 lists the expected state permits required for the Projects and their statuses. The timelines for each permit/approval are discussed in Section 7.2.

The permitting processes for New England Wind 1 and New England Wind 2 are identical to that of Vineyard Wind 1, which has received all required state permits and is under construction. Major state permitting for New England Wind 1 is complete; New England Wind 2 is well underway. New England Wind 1 has received all state permits, with one pending appeal of the Massachusetts Energy Facilities Siting Board’s (EFSB’s) Final Decision. Together, the permitting processes for each of Avangrid’s projects have provided invaluable experience and enabled Avangrid to establish a strong working relationship with regulators and stakeholders. Additionally, Avangrid is applying lessons learned from the Vineyard Wind 1 and New England Wind 1 state permitting processes to New England Wind 2 to help ensure a timely and successful state permitting process.
<table>
<thead>
<tr>
<th>Agency/Regulatory Authority</th>
<th>Permit/Approval</th>
<th>New England Wind 1 Status</th>
<th>New England Wind 2 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEPA Office</td>
<td>Certificate of the Secretary of Energy and Environmental Affairs on Environmental Impact Report</td>
<td>Final Environmental Impact Report (FEIR) Certificate received January 28, 2022</td>
<td>Environmental Notification Form Certificate received on December 9, 2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Draft Environmental Impact Report (DEIR) Certificate received on October 11, 2023</td>
<td>Draft Environmental Impact Report (DEIR) Certificate received on October 11, 2023</td>
</tr>
</tbody>
</table>
| EFSB / Massachusetts Department of Public Utilities (DPU) | G.L. c. 164, § 69 Approval
G.L. c. 164, § 72 Approval to Construct
G.L. c. 40A § 3 Zoning Exemption | Final Decision issued on December 18, 2023 (Docket # EFSB 20-01) | Petition filed on November 1, 2022 (Docket # EFSB22-06) |
| | | | Supplemental petition filed May 12, 2023 |
| Massachusetts Department of Environmental Protection (MassDEP) | Chapter 91 Waterways License and Dredge Permit (310 CMR 9.00)/Water Quality Certification (Section 401 of the CWA, 314 CMR 9.00) | Joint Application filed May 5, 2022;
401 Water Quality Certificate issued May 12, 2023, and
Chapter 91 License issued February 21, 2024 | |
| Massachusetts Department of Transportation (MassDOT) | Non-Vehicular Access Permit(s) | Application filed November 17, 2023. Anticipated approval in Q2 2024 | |
| Massachusetts Board of Underwater Archaeological Resources | Special Use Permit | Permit I7-003 renewal approved February 26, 2021 | Special Use Permit 21-006 Renewal Application approved on April 6, 2023 |
Table 7.1-2 State Permits and Approvals

<table>
<thead>
<tr>
<th>Agency/Regulatory Authority</th>
<th>Permit/Approval</th>
<th>New England Wind 1 Status</th>
<th>New England Wind 2 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Heritage and Endangered Species Program</td>
<td>Conservation and Management Permit</td>
<td>Massachusetts Endangered Species Act Determination issued April 1, 2022, with conditions (will not result in a Take of State-listed species)</td>
<td>Massachusetts Endangered Species Act Checklist submitted on November 11, 2023</td>
</tr>
<tr>
<td>Massachusetts Historical Commission</td>
<td>State Archaeologist Permit #4427 (980 C.M.R. § 70.00)</td>
<td>Reconnaissance Survey permit application filed May 4, 2020</td>
<td>Intensive Survey permit application filed on August 18, 2022</td>
</tr>
<tr>
<td></td>
<td>State Archaeologist’s Permit #4006 for Reconnaissance Survey issued May 12, 2020</td>
<td>State Archaeologist’s Permit #4006 amended and extended March 2, 2021</td>
<td>State Archaeologist’s Permit #4427 for Intensive Survey issued on October 4, 2022; Amended and extended May 19, 2023.</td>
</tr>
<tr>
<td>Massachusetts Division of Marine Fisheries</td>
<td>Letter of Authorization and/or Scientific Permit (for surveys and pre-lay grapnel run)</td>
<td>TBF 1 month prior to work</td>
<td>TBF 1 month prior to work</td>
</tr>
</tbody>
</table>

The sections below summarize the requirements for each of the anticipated state permits, approvals, and consultations required to construct the Projects.

7.1.2.1 Energy Facilities Siting Board

The EFSB reviews proposals to construct certain energy facilities, including electric transmission lines and substations. Pursuant to M.G.L. c. 164 § 69J, no applicant shall commence construction of a “facility” unless a petition for approval of construction has been granted by the EFSB. A jurisdictional “facility” includes a “new electric transmission line having a design rating of 69 kilovolts or more and which is one mile or more in length on a new transmission corridor” (M.G.L c. 164 § 69G). The EFSB also has the ability to grant a Certificate of Environmental Impact and Public Interest (approval under M.G.L. c. 164 § 69K-69O), which has the effect of granting other state, regional, and local permits.

7.1.2.2 Massachusetts Environmental Policy Act

MEPA jurisdiction is triggered when an entity undertakes certain activities in Massachusetts that require one or more state permits. MEPA jurisdiction only applies to those portions of the Projects located within Massachusetts, including its territorial waters. Components of the Projects subject to MEPA review include offshore export cables within state jurisdictional waters, all onshore export cables, the onshore substations, and the grid interconnections from the new onshore substations to the existing West Barnstable Substation.
7.1.2.3 Massachusetts Department of Environmental Protection

Both New England Wind 1 and New England Wind 2 require a unique Chapter 91 Waterways License and a Section 401 Water Quality Certificate from the MassDEP. Elements of the Projects within jurisdictional flowed tidelands of the Commonwealth and/or Waters of the US in the Commonwealth include portions of the offshore export cable routes within Massachusetts waters and intertidal zones.

7.1.2.4 Massachusetts Department of Transportation

A Non-Vehicular Access Permit is required from the MassDOT for installation of utilities within the state highway layout. New England Wind 1 and New England Wind 2 require access to and installation of utilities within the state highway layout including along a portion of Falmouth Road (Route 28) and a trenchless crossing beneath Route 6 for each route.

7.1.2.5 Article 97

Lands that have been acquired for certain conservation, recreation, or open space purposes are protected under Article 97 of the Amendments to the Massachusetts Constitution. A permanent change of use or a disposition of a property interest in these lands (including underground easements) requires legislative approval under Article 97.

Avangrid submitted a request for legislative authorization for disposition of land required for New England Wind 1. This request included the use of the Craigville Beach landfall site and a permanent easement for the onshore export cable crossing underneath Aaron S. Crosby Park in the Barnstable. Legislative approval in accordance with Article 97 was granted on July 28, 2022 (see Attachment 7.1-1).

7.1.3 Regional and Local Permits and Approvals

In addition to state permits, elements of the Projects that occur in Massachusetts will need to obtain approvals and permits at the regional and local levels. Table 7.1-3 lists the expected regional and local level reviews and permits required for the Projects and their statuses. The timelines for each permit/approval are discussed in Section 7.2.
Table 7.1-3 Regional and Local Permits and Approvals

<table>
<thead>
<tr>
<th>Agency/Regulatory Authority</th>
<th>Permit/Approval</th>
<th>New England Wind 1 Status</th>
<th>New England Wind 2 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Permits and Approvals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Cod Commission (CCC)</td>
<td>Development of Regional Impact</td>
<td>DRI approval decision issued May 11, 2023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DRI) Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martha's Vineyard Commission (MVC)</td>
<td>DRI Review</td>
<td>DRI approval decision issued September 19, 2022</td>
<td>DRI application filed December 13, 2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Permits and Approvals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edgartown Conservation</td>
<td>NOI</td>
<td>Superseding Order of Conditions issued by MassDEP</td>
<td>Filed November 2, 2023</td>
</tr>
<tr>
<td>Commission</td>
<td></td>
<td>May 16, 2023</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edgartown Wetland Bylaw Permit issued by the Edgartown</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conservation Commission September 13, 2023</td>
<td></td>
</tr>
<tr>
<td>Barnstable Conservation</td>
<td>NOI</td>
<td>Order of Conditions issued October 17, 2023</td>
<td></td>
</tr>
<tr>
<td>Commission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mashpee Conservation</td>
<td>NOI</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Commission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nantucket Conservation</td>
<td>NOI</td>
<td>Order of Conditions issued May 16, 2022</td>
<td>Order of Conditions issued January 4, 2024</td>
</tr>
<tr>
<td>Commission</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.1.3.1 Regional Permits and Approvals

Onshore elements of the Projects are primarily located in Barnstable, Massachusetts and require review by the CCC. Project elements within the waters of Edgartown on Martha’s Vineyard also require review by the MVC.

7.1.3.2 Local Permits and Approvals

Permits and approvals at the local level consider the offshore export cable routes, the New England Wind 1 landfall site and onshore export cable route, and the New England Wind 2 preferred landfall site and onshore export cable route. Road opening permit(s)/Grant(s) of Location from Barnstable and
permits from the appropriate local conservation commissions are also required for each of the Projects.

7.2. Permitting Timeline

Provide the anticipated timeline for seeking and receiving the required permits, licenses, and environmental assessments and/or environmental impact statements.

Include a project approval assessment which describes, in narrative form, each segment of the process, the required permit or approval, the status of the request or application and the basis for projection of success by the milestone date. All requirements should be included on the project schedule in Section 10.

New England Wind 1 and New England Wind 2 have been planned and designed with a detailed and prudent schedule in line with the information provided in Section 9. Avangrid is confident this permitting timeline is realistic and achievable given that the federal permitting process is almost complete and the state, regional, and local permitting of New England Wind 1 is complete.
7.2.1 Federal Permitting Timeline

Bureau of Ocean Energy Management

Avangrid filed the New England Wind COP (which includes both New England Wind 1 and New England Wind 2) with BOEM in July 2020. BOEM finished its completeness review of the New England Wind COP and issued an NOI to prepare an Environmental Impact Statement on June 30, 2021. BOEM published a DEIS on December 23, 2022, assessing the potential impacts to physical, biological, socioeconomic, and cultural resources that could result from both Projects. BOEM issued the FEIS on March 1, 2024, concluding its environmental review of the Projects. BOEM has also concluded the Section 106 historic preservation consultation, and a Memorandum of Agreement has been executed. BOEM will issue the ROD on April 1, 2024, and is expected to approve the New England Wind COP on July 1, 2024. Following approval of the New England Wind COP, Avangrid will submit a Facility Design Report and a Fabrication and Installation Report for review by BOEM. In adherence, Avangrid will not fabricate or install any relevant aspect of the Projects until it is determined that all proposed work will remain within the approved project design envelope.
US Environmental Protection Agency

The OCS Air Permit process was initiated by the filing of an NOI for the Projects on January 28, 2022. Avangrid submitted OCS Air Permit applications for the Projects (one for New England Wind 1 and one for New England Wind 2) in October 2022. The applications were deemed complete by the Environmental Protection Agency on February 13, 2023. The draft OCS Air Permits were published on December 19, 2023. Final OCS Air Permits are anticipated in Q2 2024.

US Army Corps of Engineers

The USACE has served as a cooperating agency during BOEM’s development of the Environmental Impact Statement for the Projects. The USACE will coordinate its review of the Section 10 Rivers and Harbors Act and Section 404 CWA permits and will issue a joint ROD with BOEM and NOAA Fisheries for both Projects. The Section 10 and Section 404 permit applications were deemed complete and Public Notice was published in December 2022. The Section 10 and Section 404 Permit for New England Wind 1 is anticipated to be issued by July 1, 2024; Additionally, NOAA Fisheries issued a Biological Opinion in February 2024.

National Marine Fisheries Service

Avangrid submitted a request for an LOA on December 1, 2021, for both Projects. The LOA request Notice of Receipt was published in the Federal Register on August 22, 2022. The application was deemed complete by NOAA Fisheries on July 20, 2022, and a proposed LOA was published June 6, 2023. The final LOA and issuance of the final ITA are anticipated July 1, 2024. Additionally, NOAA Fisheries issued a Biological Opinion in February 2024.

US Coast Guard, Federal Aviation Administration, and Department of Defense Siting Clearinghouse

The USCG and FAA authorizations/reviews are pre-construction approvals. For New England Wind 1 and New England Wind 2, FAA Determinations of No Hazards are not needed for the offshore infrastructure; however, Determinations of No Hazards may be needed for port activities (e.g., use of cranes) and certain offshore vessels. Avangrid anticipates receiving any required FAA Determinations of No Hazard in Q2 2026 and receiving USCG’s PATON authorization 90 days prior to offshore construction. Avangrid anticipates completing consultation with the DOD Siting Clearinghouse regarding radar interference by Q2 2024.

Massachusetts Office of Coastal Zone Management and Rhode Island Coastal Resources Management Council

The federal consistency review process was technically initiated upon BOEM’s release of the NOI for the Projects. To synchronize federal consistency review with other federal and state permits, Avangrid entered into separate agreements with MA CZM and RI CRMC to “stay” the agencies’ six-month review periods. The MA CZM and RI CRMC completed their respective federal consistency review processes in Q4 2023. The RI CRMC issued its federal consistency determination on October 19, 2023, and the MA CZM issued its determination on November 9, 2023.
7.2.2 State, Regional, and Local Timelines

As discussed in Section 7.1, approvals are required for portions of the offshore export cables and onshore components over which Massachusetts and its regional and local entities have jurisdiction. Massachusetts, regional, and local approvals are not required for elements of New England Wind 1 and New England Wind 2 located in federal waters.

Massachusetts Environmental Policy Act Office

Avangrid initiated the MEPA process for New England Wind 1 with the filing of an Environmental Notification Form on June 11, 2020 (Energy and Environmental Affairs #16231). Avangrid submitted a DEIR to the MEPA Office on March 19, 2021, and an FEIR on November 15, 2021. The MEPA process successfully concluded for New England Wind 1 with the issuance of a Certificate of the Secretary of Energy and Environmental Affairs on the FEIR (i.e., the Final MEPA Certificate) on January 28, 2022 (Attachment 7.2-1).

Avangrid filed an Environmental Notification Form and DEIR for New England Wind 2 with the MEPA Office in November 2022 and July 2023, respectively (Energy and Environmental Affairs #16611). New England Wind 2 received a Certificate of the Secretary of Energy and Environmental Affairs on the DEIR in October 2023.

Energy Facilities Siting Board/Massachusetts Department of Public Utilities

The EFSB review process for New England Wind 1 was initiated by Avangrid with the filing of its petition on May 28, 2022, to construct the transmission lines (i.e., offshore and onshore export cables) and onshore substation pursuant to M.G.L. c. 164 § 69J (Section 69J Petition). Avangrid also filed the DPU Section 72 and 40A petitions for New England Wind 1 at the same time. Review of these DPU petitions was consolidated with the EFSB review. Evidentiary hearings for New England Wind 1 concluded on June 2, 2022, and Briefs were filed in July 2022. The EFSB issued its Final Decision on New England Wind 1 on December 18, 2023 (Attachment 7.2-2). That Final Decision, in support of the Project, is currently facing one appeal, related to one narrow issue—expected noise impact from the facility at an abutter's home.

Avangrid filed a petition with the EFSB to construct the New England Wind 2 offshore and onshore export cables and onshore substation on November 1, 2022. Avangrid has also filed related petitions with the DPU for approval of the construction of transmission lines and for relief from local zoning requirements on the same date (see Attachment 6.3-1).

Massachusetts Department of Environmental Protection Permits

Avangrid submitted a Joint Application for a Water-Dependent Chapter 91 Waterways License/Permit (310 CMR 9.00) and Dredging Fill/Excavation Water Quality Certification (314 CMR 9.00) for New England Wind 1 on May 5, 2022. MassDEP issued a 401 Water Quality Certificate on May 12, 2023. The New England Wind 1 Chapter 91 License (Attachment 7.2-3) was issued on February 21, 2024, following receipt of all required permits (i.e., Order of Conditions and Superseding Order of Conditions) from the municipal conservation commissions and MassDEP.
Massachusetts Department of Transportation - Non-Vehicular Access Permit(s)

The MassDOT permits required for various activities within the state highway layout are within the purview of primary contractors completing the associated scope of work. The filing of these permits will occur with consideration to the time needed for MassDOT to review all relevant information, ensure compliance, and process all requests.

Massachusetts Board of Underwater Archaeological Resources Special Use Permit

A Special Use Permit (#17-003) covering marine archaeological reconnaissance surveys in state waters was first granted to New England Wind 1 by the Massachusetts Board of Underwater Archaeological Resources on June 4, 2019. It was renewed on multiple occasions, most recently on February 26, 2021. New England Wind 2 also received a Special Use Permit (#21-006) on December 22, 2021, for additional marine archaeological survey work. It was successfully renewed most recently on April 6, 2023.

Natural Heritage and Endangered Species Program - Conservation and Management Permit

In consideration of National Heritage and Endangered Species Program criteria for conservation and management, New England Wind 1 was granted a determination with conditions on April 1, 2022. The determination stated that the project would not result in a take of any state-listed endangered species, as dictated by the Massachusetts Endangered Species Act. On November 11, 2023, New England Wind 2 initiated this process by submitting a Massachusetts Endangered Species Act Checklist, along with an initial permit fee payment.

Massachusetts Historical Commission - State Archaeologist Permit

New England Wind 1 filed for a permit covering reconnaissance survey work on May 4, 2020. In consideration of Avangrid's archaeological consultants, resources, and their research designs, State Archaeologist Permit #4006 was issued on May 12, 2020. The permit was amended and extended on March 2, 2021. New England Wind 2 first filed for a permit covering intensive survey on August 18, 2022. The filing yielded State Archaeologist Permit #4427, which was issued on October 4, 2022. It was later amended and extended on May 19, 2023.

Massachusetts Division of Marine Fisheries - Letter of Authorization and/or Scientific Permit

Letters of Authorization will be required for vessel services associated with pre-lay surveys and pre-lay grapnel runs in state waters, which will take place prior to cable installation. These activities and associated measures to eliminate obstruction conflict in the OECC are scheduled shortly before their occurrence and rely on information specific to vessels and captains available at the time. Submission of associated requests are anticipated to occur approximately one month before the start of pre-lay survey and grapnel run efforts begin.
Regional Reviews

Avangrid submitted DRI applications to the CCC and MVC for New England Wind 1 in June 2022. The MVC issued a DRI Decision on September 19, 2022, and the CCC issued a DRI Decision on May 11, 2023 (*Attachment 7.2-4 and Attachment 7.2-5*).

For New England Wind 2, Avangrid filed a DRI application with the MVC on December 13, 2023.

Local Permits

For large developments on Cape Cod and Martha’s Vineyard, local permitting initiates DRI review and then follows the DRI processes. Once the DRI process is complete, decisions on local filings such as those from conservation commissions can be issued.

Local filings for New England Wind 1 have been made to conservation commissions in the towns of Edgartown, Nantucket, and Barnstable in accordance with the Massachusetts Wetlands Protection Act and local wetland bylaws. The Nantucket Conservation Commission issued a permit on May 16, 2022 (i.e., Order of Conditions) (*Attachment 7.2-6*) and the Barnstable Conservation Commission issued an Order of Conditions on October 17, 2023 (*Attachment 7.2-7*).

The Edgartown Conservation Commission voted to deny the NOI application for New England Wind 1 at its meeting on January 25, 2023. Following that decision, Avangrid successfully appealed this denial, and a Superseding Order of Conditions was issued by MassDEP on May 16, 2023 (*Attachment 7.2-8*). Subsequently, the Edgartown Conservation Commission agreed to issue a permit to approve the Project under the Wetland Bylaw, which was executed on September 13, 2023.

Local filings for New England Wind 2 commenced in Q4 2023. Avangrid filed an NOI with the Nantucket Conservation Commission on October 27, 2023, and received an Order of Conditions on January 4, 2023 (*Attachment 7.2-9*). Avangrid also filed an NOI with the Edgartown Conservation Commission on November 2, 2023.

7.3. Engagement and Environmental Track Record

Provide information (a) demonstrating past and current productive relationship with environmental, commercial and recreational fishing, federally recognized and state acknowledged tribes, Environmental Justice, and onshore stakeholders; and (b) demonstrating your track record of avoiding, minimizing, and mitigating environmental, fishing, tribal, environmental justice, and onshore impacts from projects similar to the proposed project.

Avangrid has committed to productive engagement with all stakeholders so that meaningful environmental and natural resource issues are understood, community feedback is considered, and community support for the Projects is earned.
7.3.1 Stakeholder Relationships

Efforts that began with Vineyard Wind I have allowed Avangrid to develop productive working relationships with a diverse range of partners across Massachusetts and the Northeast. These key collaborations and their achievements to date are summarized in this section and in the following attachments:

- Fisheries Mitigation Plan, Attachment 7.4-1
- Fisheries Communication Plan, Attachment 7.4-2
- Environmental Mitigation Plan, Attachment 7.5-1
- Environmental Justice Impact Assessment, Attachment 7.6-1
- Community Engagement Plan, Attachment 7.7-1
- Support Letters, Attachment 7.7-2

7.3.1.1 Environmental Stakeholders

Avangrid is committed to responsibly developing, constructing, and operating offshore wind projects with minimal environmental impact. Avangrid has worked alongside environmental stakeholders who share a common interest in applying effective and practical solutions that avoid, minimize, restore, and/or counter potential impacts both onshore and offshore. These stakeholders also play a role in ensuring the long-term success of environmental measures by providing considerations that help inform the final design of the Projects, their operation, and environmental and socioeconomic management. Several examples that demonstrate such effort are listed below.

- **State Technical Environmental and Fisheries Working Groups:** State technical working groups provide a unique platform for engagement with key environmental groups through identification of key concerns (e.g., management of boulder relocation). The feedback on concerns is invaluable for proactively implementing minimization and mitigation measures into Avangrid's planning. Avangrid has engaged with the following state technical working groups and related organizations:
 - Massachusetts Habitat Working Group
 - Massachusetts Fisheries Working Group
 - Connecticut Commission on Environmental Standards
 - New York State Environmental Technical Working Group
 - New York State Fisheries Technical Working Group
 - Rhode Island Fisheries Advisory Board
 - Rhode Island Habitat Advisory Board

- **Regional Wildlife Science Collaborative:** Similar to state technical working groups, the Regional Wildlife Science Collaborative brings together environmental stakeholders from federal and state governments, environmental non-governmental organizations (eNGOs), academics, and developers. Avangrid is a member of the industry caucus and actively participates in each of the taxa subcommittees. Recent efforts have included review and comment on the draft Science Plan and working with Regional Wildlife Science Collaborative to serve as administrator of funding for
regional monitoring, avian tagging, and whale technology advancement, as described in Section 13.

- **Responsible Ocean Science Alliance**: As a 501(c)(3) nonprofit organization dedicated to advancing collective offshore wind industry resources, the Responsible Ocean Science Alliance is at the center of regional scientific research, monitoring plan development, and interorganizational communication. Avangrid is a founding developer representative of the Responsible Ocean Science Alliance. In addition to financial support, Avangrid staff regularly participate in workshops and meetings.

- **Nature Conservancy**: The Nature Conservancy is leading efforts to integrate nature-inclusive design into wind farms in the US (e.g., their Turbine Reefs: Nature-Based Designs for Augmenting Offshore Wind Structures in the United States report)\(^{10}\) and advocating for policy changes for biodiversity-inclusive wind development. Avangrid is actively engaged with the Nature Conservancy on nature-inclusive design, including presenting at multiple sessions in a symposium organized by the Nature Conservancy and the Marine Affairs Institute at Roger Williams University School of Law, titled “Can Offshore Wind Development Have a Net Positive Impact on Biodiversity? Regulatory and Scientific Perspectives and Considerations.” Recordings of Avangrid’s presentations and slides are available on the Roger Williams University website.\(^{12}\)

\(^{10}\) https://www.fws.gov/story/teaming-terns

7.3.1.2 Commercial and Recreational Fisheries Stakeholders

Fishing communities and their members are crucial contributors to meaningful advancement of US offshore wind development. Avangrid's track record of fisheries engagement includes continuous industry-leading initiatives that prioritize the development of proactive solutions to often complex fisheries-related issues. Constructive working relationships with fisheries stakeholders include:

- **Fisheries Representatives:** Avangrid has formal working relationships with 14 Fisheries Representatives (FRs) on the East Coast, including 11 in Southern New England who reflect a range of gear types, fishing communities, and home ports across the region. While advocates for their respective fisheries communities, FRs provide a direct line of two-way communication along with consultation and perspective to ensure that Avangrid's practices and protocols consider the full spectrum of fishing industry concerns.

- **Fisheries Outreach and Engagement:** Sustained and productive outreach efforts by Avangrid have led to the fluidity of communication between both industries. A lead for engagement, Avangrid coordinates and participates in events (i.e., Ports Hours, fishing tournaments, habitat and fisheries working groups) bringing commercial and recreational fishers together with industry partners to better understand and address concerns, questions, and/or comments. This has resulted in consistency in awareness from all parties and added layers of communication channels that have proven to be highly successful and effective.

- **Fisheries Research Partnerships:** Avangrid has demonstrated its commitment to fisheries science by progressively building a targeted research portfolio over the years. Consistent with the input received from fishing communities and research entities, Avangrid encapsulates this in its fisheries survey work starting in 2019 and carries forward these data links in the development of its eight-year fisheries monitoring plan. Furthermore, Avangrid actively sought additional research collaborations to meet the research gaps and requests of its regional partners. This has allowed for a wide and ever-expanding research portfolio that is made publicly available through via the websites for the Projects.

• **State Fisheries Working Groups**: As described above, Avangrid is an active participant in state working groups including the Massachusetts Fisheries Working Group and New York State Fisheries Technical Working Group.

7.3.1.3 Tribal Nation Engagement

Avangrid has committed to engage, listen, and build offshore wind career opportunities for members of Tribal Nations in the vicinity of the Projects, including the Mashpee Wampanoag Tribe, Wampanoag Tribe of Gay Head (Aquinnah), Chappaquiddick Wampanoag Tribe, Narragansett Indian Tribe, Shinnecock Indian Nation, Mohegan Tribe, Mashantucket Pequot Tribal Nation, Delaware Tribe of Indians, and Delaware Nation. Strong working relationships have served as a foundation for the exceedance of federal and industry requirements for Tribal Nation participation in environmental permitting processes. The agreement for the Lease Area requires Avangrid to consult with specific Tribal Nation entities ahead of relevant archaeological surveys for the Projects. In the event of onshore or offshore survey work, Tribal Nations are notified in advance and given the opportunity to attend and observe the work. Given the potential for the Projects to affect Tribal Nation populations’ historical and cultural resources, open communication, and consultation through a variety of mediums are essential. Members of Avangrid’s Workforce Development and Outreach teams have also committed to extensive work with Tribal Nations to ensure that tribal community members are involved in the recruitment, training, and mentorship of individuals seeking career development in offshore wind. This engagement has yielded a successful conclusion to the Section 106 historic preservation consultation process.

7.3.1.4 Environmental Justice Communities

The fair treatment and meaningful involvement of communities impacted disproportionately by climate change and related environmental issues are priorities of critical importance to the growth of the US offshore wind industry. Avangrid continues to engage EJ communities where the development of port facilities and onshore construction efforts will take place. It is anticipated that Avangrid’s level of EJ engagement and support will exceed the expectations of relevant Commonwealth policies to involve the public in offshore wind decision-making. The Environmental Justice Impact Assessment (Attachment 7.6-1) outlines anticipated minor and short-term impacts that will occur during the construction phase, mitigation measures when impacts cannot be avoided, and an engagement strategy and plan.

7.3.1.5 Onshore Stakeholders

Avangrid has undertaken substantial efforts to develop constructive relationships with onshore stakeholders, particularly in Barnstable, Martha’s Vineyard, and Nantucket. Highlights of this engagement include:

- **Barnstable** – Executed HCAs for Vineyard Wind 1 and New England Wind 1 (HCA-1 and HCA-2, respectively), regular hybrid and virtual open houses, sponsorships of community events and organizations, etc.
- **Martha’s Vineyard** – Community Benefits Agreement with Vineyard Power Cooperative
- **Nantucket** – Good Neighbor Agreement with the Town of Nantucket
The success of Avangrid’s outreach efforts is evidenced by the execution of HCA-1 for Vineyard Wind 1 in October 2018 and HCA-2 for New England Wind 2 in May 2022.

As outlined in HCA-2, Avangrid will pay Barnstable $16 million as a host community fee, above and beyond the applicable commercial taxes that will be assessed by Barnstable. Additionally, Avangrid will limit construction at the Craigville Beach parking lot and along roadways to the non-summer months and will restore the parking lot used for temporary staging to its existing condition. Avangrid has also committed to taking extra measures, above and beyond standard engineering practice, to protect groundwater in Barnstable. Barnstable will host New England Wind 1’s onshore export cables, and Avangrid will coordinate onshore export cable installation with the planned installation of a municipal sewer line beneath the same roadways to minimize disruption and defray some of Barnstable’s sewer line roadwork costs.

A similar hands-on collaborative approach, which is the hallmark of Avangrid’s community engagement philosophy, was implemented to arrive at a community benefits agreement with Vineyard Power Cooperative on Martha’s Vineyard (Attachment 7.3-1) and a Good Neighbor Agreement with the Town of Nantucket (Attachment 7.3-2). These agreements directly address community concerns about visual impacts from offshore wind and climate change impacts.

Avangrid has planned and hosted monthly hybrid and virtual community open house events in Barnstable, with great care taken to ensure that all public meetings associated with permitting of the Projects are well-advertised to stakeholders. Avangrid has also executed a robust direct mailing campaign to provide residents and abutters in Barnstable with relevant details about the Projects, contact information, and other means for residents to connect with Avangrid to obtain information and provide feedback on New England Wind 1 and New England Wind 2.
7.3.2 Avoiding, Minimizing, and Mitigating Project Impacts

7.3.2.1 Environmental Protection Measures

Avangrid is committed to developing, permitting, and deploying well-sited offshore wind projects with minimal environmental impact. As the developer of Vineyard Wind 1, New England Wind 1, and New England Wind 2, Avangrid possesses unique insights into key environmental issues and has pioneered a successful approach to prioritize avoidance of potential impacts wherever possible and minimize and mitigate any unavoidable impacts. The extensive experience gained from developing and refining environmental protection measures for Vineyard Wind 1 directly informed the avoidance, minimization, and mitigation measures proposed for the Projects.

Avangrid’s successful track record of avoiding, minimizing, and mitigating potential impacts is most readily demonstrated through the receipt of the Vineyard Wind 1 COP Approval, which contained 79 pages of terms and conditions that provided a comprehensive suite of protective measures related to navigational and aviation safety, national security, protected species and habitat, commercial fisheries, for-hire recreational fishing, EJ communities, and cultural resources. The conditions represented the culmination of years of extensive coordination with BOEM; other federal, state, and local agencies;
Tribal Nations; environmental organizations; and stakeholders to develop innovative measures that afford the highest levels of environmental protection while maintaining project viability.

Avangrid’s efforts to avoid, minimize and mitigate environmental impacts are further described in the Environmental Mitigation Plan provided as Attachment 7.5-1.

7.3.2.2 Measures for Commercial and Recreational Fisheries

Avangrid has a decade of experience working with commercial and recreational fishermen, vessel owners, fishing advocacy organizations, shore support services, and fisheries research institutions. Avangrid’s track record in the region demonstrates its ability to overcome challenging circumstances and develop productive working relationships with fisheries stakeholders as well as a commitment to develop, permit, and deploy well-sited offshore wind projects with minimal environmental and fisheries impacts.

To address mariner and fisheries stakeholder concerns during the development of Vineyard Wind 1, the layout of the project was modified in an unprecedented step to adopt a more uniform, east-west and north-south grid pattern with 1 NM spacing between WTG/ESP positions. The 1 x 1 NM WTG/ESP layout was adopted to facilitate vessel navigation and commercial fishing activities in direct response to feedback from the commercial fishing industry. This layout will also be used for New England Wind 1 and New England Wind 2.

Avangrid has been consistently engaged in all efforts to develop and support the BOEM recommendation for regional federal mitigation and compensation. The Fisheries team has actively provided input and financial support to best support the 11-state regional effort. These efforts have been conducted in parallel with the recently completed federal consistency reviews carried out by MA CZM and RI CRMC. The mutually agreed-upon terms and conditions, in combination with Avangrid’s proposed compensatory mitigation and other mitigation measures, have allowed the MA CZM and RI CRMC to issue written determinations finding New England Wind 1 and New England Wind 2 to be consistent with the enforceable policies of the Massachusetts and Rhode Island coastal zone management programs.

To support fisheries communication and engagement, Avangrid employs a full-time Lead for Fisheries Outreach Coordination and a full-time Fisheries Liaison, both of whom have deep knowledge of fishing practices and issues as well as an extensive network of personal relationships with various types of fishermen and fisheries organizations in the region. Additional measures to reduce potential impacts to fisheries from the Projects are described in the Fisheries Mitigation Plan provided as Attachment 7.4-1 and the Fisheries Communication Plan provided as Attachment 7.4-2.

7.3.2.3 Measures for Tribal Nations

Avangrid has been engaging with Tribal Nations since 2016 and initiated Tribal Nation outreach specific to the Projects in early 2020. Avangrid’s efforts to listen to, engage and cultivate relationships with, and support the region’s Tribal Nations have met, and often exceeded, those required by Avangrid’s federal lease agreement and permitting requirements. Avangrid is proactively working with Tribal Nations to identify opportunities to recruit, mentor, and train members of Tribal Nations for careers in the offshore wind industry and build long-term relationships that support Tribal Nations’ efforts to preserve and maintain cultural heritage and histories. In addition, any time there is a public
engagement opportunity, such as a comment period, members of Tribal Nations receive a personal invitation from Avangrid.

Mitigation measures proposed by Avangrid include but are not limited to, mitigation funding, scholarship and training funding, development of a Geographic Information System database of relevant cultural and natural resources surveyed, and a submerged ancient landform study. Avangrid developed seven Historic Property Treatment Plans in consultation with BOEM, Tribal Nations, and other parties that are included in the Section 106 Memoranda of Agreement that was finalized in March 2024. These Historic Property Treatment Plans provide background data, historic property information, and detailed steps that will be implemented to carry out the mitigation identified during the Section 106 consultation process. More information on avoidance, minimization, and mitigation measures related to Tribal Nation cultural and natural resources, including impacts on terrestrial resources, marine resources, and visual impacts can be found in Attachment 7.5-1.

Additional information on specific avoidance, minimization, and mitigation measures for Tribal Nation impacts can be found in the Environmental Mitigation Plan provided as Attachment 7.5-1, the Environmental Justice Impact Assessment provided as Attachment 7.6-1, and the Community Engagement Plan provided as Attachment 7.7-1.

7.3.2.4 Measures for Environmental Justice Communities

The Projects have been carefully developed and sited to avoid potential impacts to potentially affected communities, including EJ populations and host communities, to the greatest extent practicable. Where potential impacts are unavoidable, Avangrid has focused on minimizing impacts and has or will develop mitigation measures in consultation with affected communities.

Avangrid has focused on expanding direct outreach for the Projects to the village of Hyannis, where several of the EJ blocks are located. This included hosting a meeting with a local nonprofit organization in Hyannis, Health Imperatives, that serves the area’s Brazilian community. Avangrid held a highly successful informational meeting with Health Imperatives where community members were invited to join for a family-friendly bilingual verbal presentation with bilingual materials and dinner from a local Brazilian restaurant. The meeting was advertised on local Brazilian radio stations and through social media and texting services to maximize turnout.

Additional information on avoidance, minimization, and mitigation measures for EJ communities can be found in the Environmental Justice Impact Assessment provided as Attachment 7.6-1.
Environmental Justice Outreach Meeting with the Brazilian Community on July 28, 2023, at Health Ministry in Hyannis, MA. A family-friendly event, with dinner served to attendees and a bilingual presentation in Portuguese and English.

7.3.2.5 Measures for Onshore Impacts

The onshore facilities for New England Wind 1 and New England Wind 2 are sited almost entirely within paved roadways or other previously developed corridors, minimizing impacts to undisturbed forest interiors, wetlands, and other significant wildlife habitat. To offset potential impacts associated with hosting the onshore facilities, Avangrid finalized HCA-2 with Barnstable in May 2022 for New England Wind 2, which includes measures that go beyond regulatory requirements for stormwater aquifer protection and pollution prevention. Additional information on managing onshore impacts can be found in the Environmental Mitigation Plan provided as Attachment 7.5-1, the Environmental Justice Impact Assessment provided as Attachment 7.6-1, and the Community Engagement Plan provided as Attachment 7.7-1.

7.4. Fisheries Mitigation Plan

Please provide information on any fisheries mitigation measures designed to avoid, minimize and mitigate impacts on the commercial fishing industry, including but not limited to addressing all criteria specified under Fishing Impacts and Fisheries Mitigation Plan in Appendix J.

Avangrid is committed to a future where the offshore wind and fishing industries can productively co-exist. Avangrid intends to support this shared vision through continued funding of research, data sharing, and stakeholder engagement across New England’s fishing community.

Avangrid’s Fisheries Mitigation Plan is a critical resource that helps guide the strategic implementation of initiatives that aim to mitigate potential fisheries impacts, support business continuity (including an industry-leading Gear Loss Compensation policy) and provide members of relevant fisheries with specialized training and resources.
Another important component of the Fisheries Mitigation Plan for New England Wind 1 and New England Wind 2 is the commitment to provide compensatory mitigation to offset potential unavoidable impacts. Through extensive review and negotiations, Avangrid and MA CZM mutually agreed to $7,359,471 in compensatory mitigation to offset potential unavoidable impacts to the fishing industry, inclusive of commercial and for-hire charter fishers and shoreside businesses that support or rely upon fish landings. A separate agreement between Avangrid and RI CRMC included $4,873,638 in compensatory mitigation.

The complete Fisheries Mitigation Plan is included as Attachment 7.4-1. An associated Fisheries Communication Plan is included as Attachment 7.4-2.

7.5. Environment Mitigation Plan

Provide a preliminary environmental characterization of the site and project, including both construction and operation. In addition, the bidder should identify environmental impacts associated with the proposed project and any potential impediments to development. A plan to avoid, minimize, or mitigate such impacts or impediments should also be included. The analysis should address all criteria specified under Environmental Impacts and Environmental Mitigation Plan in Appendix J.

As part of the New England Wind COP, Avangrid has completed an in-depth review of existing literature and conducted site-specific primary data collection to characterize the baseline species and habitats in the New England Wind 1 and New England Wind 2 offshore and onshore areas. Potential impacts and effects to atmospheric, physical, and biological resources are detailed in the New England Wind COP and in the FEIS, the latter of which is prepared on behalf of BOEM by a third party. The FEIS details proposed mitigation measures that will be integrated into the terms and conditions of New England Wind COP approval. Avangrid will apply the mitigation hierarchy, first seeking to avoid, then minimize and/or mitigate potential impacts. In addition to measures included in Avangrid's federal approvals, Avangrid will also integrate state, regional, and local requirements in plans. The Environmental Mitigation Plan outlines industry-leading environmental protection measures and initiatives that proactively protect habitats and species, including those that are threatened or endangered. The Environmental Mitigation Plan expands on the environmental characterization and evaluation of all New England Wind 1 and New England Wind 2 areas, including the criteria for identifying environmental impacts (see Attachment 7.5-1 for more details).

7.6. Environmental Justice Impact Assessment

Please provide information on potential impacts on Environmental Justice Populations and host communities, including but not limited to addressing all criteria specified under Environmental Justice Impacts in Appendix J.
Please propose a strategy plan to track and report on the status of environmental justice impacts, and engagement and employment (training, recruitment and hiring goals) opportunities, based on the template provided in the Form MOU with DOER and MassCEC and any other supplemental plans for tracking and reporting.

Please provide a marked version of the Form MOU with DOER and MassCEC for this solicitation (see Appendix L) showing any specific proposed changes to the Form MOU. Bidders are discouraged from proposing any material changes or conditions to the Form MOU and any such changes will be considered in the Stage Two Qualitative Evaluation.

Avangrid has worked to carefully develop and site the Projects in a manner that avoids potential impacts to adjacent communities, including EJ populations.

Overall, the Projects are not anticipated to cause any adverse impacts on human health to any population groups, including EJ populations. Temporary impacts that are typical of large construction projects will occur, such as associated traffic, emissions from support vehicles and vessels, and noise. Potentially affected communities, including some EJ populations, would experience these impacts to a limited extent.

The vast majority of New England Wind 1 and New England Wind 2 components are over one mile from any mapped EJ populations. However, a portion of an EJ population (mapped for minority) is located less than one mile east of the New England Wind 1 onshore substation site, onshore export cable route, and grid interconnection route. This EJ population meets minority criteria under the Massachusetts EJ Policy and is located between Route 28/West Main Street and Phinney’s Lane to the east of the New England Wind 1 routes.

Where potential impacts are unavoidable, Avangrid has focused on minimizing impacts and has or will develop mitigation measures in consultation with affected communities. The potential impacts associated with construction and installation of both Projects on EJ populations continues to be assessed and evaluated as part of the multi-year federal and state environmental permitting processes.

Accounting for environmental benefits and economic opportunities, New England Wind 1 and New England Wind 2 will result in net benefits for potentially affected communities, including EJ populations. Plans to track and report on the status of impacts to EJ communities are further described in Attachment 7.6-1. Avangrid has reviewed Appendix L and found the terms satisfactory, and therefore has not attached a marked version to this submission.

7.7. Public Support and Community Engagement Plan

Provide documentation identifying the level of public support for the project including letters from public officials, newspaper articles, etc. Include information on specific localized support and/or opposition to the project of which the bidder is aware.

Provide copies of any agreements with communities and other constituencies impacted by the project.

Provide a stakeholder map and a plan for community engagement activities and targeted stakeholder outreach.
Community engagement is a critical component to facilitating meaningful public discourse on the future of offshore wind development and generating support for its broad adoption across the Commonwealth, the region, and the US.

Avangrid’s approach to community engagement prioritizes creating regular and meaningful opportunities for stakeholders to provide input on the Projects, developing strong community relationships, and establishing community benefits in collaboration with relevant stakeholders. This approach has informed Avangrid’s community engagement efforts to date, as detailed in the Community Engagement Plan (Attachment 7.7-1), which will guide further action through the construction and operation phases.

Community engagement efforts for the Projects began in 2019 with the introduction of the development of the Lease Area. Since that time, Avangrid has worked to develop a multi-faceted coalition of local, state, and regional support that emphasizes participation in a diverse array of accessible forums, including but not limited to in-person discussions with subject matter experts, hybrid open houses, formal comment periods, and direct meetings with stakeholders.

Documentation of this support is detailed further in Avangrid’s Support Letters (Attachment 7.7-2), showcasing endorsement of the Projects at the state and local levels, as well as attached examples of local partnerships including the Vineyard Power Cooperative Community Benefits Agreement (Attachment 7.3-1), Good Neighbor Agreement with the Town of Nantucket (Attachment 7.3-2), HCA-1 (Attachment 6.1-1), and HCA-2 (Attachment 6.1-2).

7.8. New Class I Renewable Eligible Resource

Provide documentation demonstrating that the project will be qualified as New Class I Renewable Portfolio Standard Eligible Resource under M.G.L. c. 25A, § 11F, and 225 CMR 14.00.
New England Wind 1 and New England Wind 2 will serve as new offshore wind generation resources located within the ISO-NE Control Area that will begin operating after December 31, 1997, and generate electricity using wind energy as its fuel source. The Projects will therefore each qualify as a “New Class I Renewable Portfolio Standard Eligible Resource” as defined under M.G.L 25A §11F and 225 C.M.R. 14.00.

7.9. New England Power Pool GIS Account

All bidders must include sufficient information and documentation that demonstrates that the bidder will utilize an appropriate tracking system to ensure a unit-specific accounting of the delivery of Offshore Wind Energy Generation, to enable the Department of Environmental Protection, in consultation with DOER, to accurately measure progress in achieving the commonwealth’s goals under chapter 298 of the acts of 2008 or Chapter 21N of the General Laws. The RECs associated with Offshore Wind Energy Generation must be delivered into the Distribution Companies’ NEPOOL GIS accounts.

Avangrid will utilize the New England Power Pool Generation Information System (NEPOOL GIS) as the tracking system to ensure a unit-specific accounting of the delivery of Offshore Wind Energy Generation, to enable the Massachusetts Department of Environmental Protection, in consultation with the Massachusetts Department of Energy Resources, to accurately measure progress toward achieving the Commonwealth’s goals under Chapter 298 of the acts of 2008 or Chapter 21N of the General Laws. Avangrid is familiar with use of the NEPOOL GIS for existing energy generation facilities and will provide associated documentation for New England Wind 1 and New England Wind 2 when available. Additionally, Avangrid hereby certifies that the Renewable Energy Credits associated with offshore wind energy generation from both Projects will be delivered into the Distribution Companies’ NEPOOL GIS accounts according to the terms specified in any PPA(s).

7.10. Claims or Litigation

Identify any existing, preliminary or pending claims or litigation, or matters before any federal agency or any state legislature or regulatory agency that might affect the feasibility or timing of the project or the ability or timing to obtain or retain the required permits for the project.

With exception of one appeal to the New England Wind 1 EFSB Final Decision, there are no existing, preliminary, or pending claims or litigation, or matters before any federal agency or any state legislature or regulatory agency that might affect the feasibility of the Projects or the ability to obtain or retain the required permits for the Projects.

14 This appeal concerns one narrow issue: the noise impact of the onshore substation on one abutter. Appeals of this kind typically take six to nine months to be resolved and the Supreme Judicial Court has never overturned a decision of the EFSB.
8. Engineering and Technology; Commercial Access to Equipment

The engineering plans for New England Wind 1 and New England Wind 2 (the Projects), as detailed herein, reflect the maturity and viability of Avangrid’s project concepts. Avangrid developed these concepts through detailed internal analysis, work performed by third-party engineering firms, and significant supply chain engagement. These efforts were driven by an in-house team of over 100 dedicated engineers, contract experts, and project managers over the last five years. The plans also align with the joint Construction and Operations Plan (COP) submitted for both Projects to the Bureau of Ocean Energy Management (BOEM) in 2022, which is expected to be fully approved in July 2024.
Table 8.1-1 New England Wind 1 Major Equipment Procurement Status

<table>
<thead>
<tr>
<th>Component</th>
<th>Procurement Status</th>
<th>Preferred Supplier (Location)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier</td>
<td>Quantity</td>
<td>Status</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Supplier A</td>
<td>Quantity 1</td>
<td>In progress</td>
</tr>
<tr>
<td>Supplier B</td>
<td>Quantity 2</td>
<td>On hold</td>
</tr>
<tr>
<td>Supplier C</td>
<td>Quantity 3</td>
<td>Ready for delivery</td>
</tr>
<tr>
<td>Supplier D</td>
<td>Quantity 4</td>
<td>Delayed due to weather</td>
</tr>
<tr>
<td>Supplier E</td>
<td>Quantity 5</td>
<td>Delivered</td>
</tr>
<tr>
<td>Supplier F</td>
<td>Quantity 6</td>
<td>Missing parts</td>
</tr>
<tr>
<td>Supplier G</td>
<td>Quantity 7</td>
<td>In transit</td>
</tr>
<tr>
<td>Supplier H</td>
<td>Quantity 8</td>
<td>Ready for delivery</td>
</tr>
<tr>
<td>Supplier I</td>
<td>Quantity 9</td>
<td>Present for production</td>
</tr>
<tr>
<td>Supplier J</td>
<td>Quantity 10</td>
<td>Final inspection complete</td>
</tr>
</tbody>
</table>

Table 8.1-1 New England Wind 1 Major Equipment Procurement Status
8.1. Preliminary Engineering Plan

Provide a reasonable but preliminary engineering plan which includes the following information:

1. Type of generation and delivery technology

2. Major equipment to be used (including nacelle, hub, blade, tower, foundation, delivery facilities structures and platforms, electrical equipment and cable), including the primary and alternative turbine equipment and their expected capacity rating.

3. Manufacturer of each of the equipment components listed above as well as the location of where each component will be manufactured.

4. Status of acquisition of the equipment components, including whether orders are in place and/or production slots secured

5. Whether the bidder has a contract for the equipment. If not, describe the bidder’s plan for securing equipment and the status of any pertinent commercial arrangements

6. Equipment vendors selected/considered

7. Track record of equipment operations

8. If the equipment manufacturer has not yet been selected, identify in the equipment procurement strategy the factors under consideration for selecting the preferred equipment.

New England Wind 1 and New England Wind 2 are offshore wind projects that Avangrid is proposing to build in federally designated Lease Area OCS-A 0534 (the Lease Area). Each Project is comprised of an Offshore Wind Energy Generation facility that will deliver power to Massachusetts via high voltage alternating current (HVAC) subsea cables that make landfall in the Town of Barnstable (Barnstable), Massachusetts. The Projects will interconnect to the New England electricity grid through an interconnection point in West Barnstable.

The engineering plan described herein applies to both Projects, which share many preliminary engineering concepts and procurement strategies, but are differentiated as needed.

8.1.1 Type of Generation and Delivery Technology

The Projects will generate and deliver reliable, cost-effective renewable electricity to Massachusetts through their Offshore Wind Energy Generation facilities and Delivery Facilities. The major technology and equipment groups that compose the Projects are the WTGs, foundations, and Delivery Facilities (inter-array cables, ESP, offshore export cables, onshore export cables, and onshore substation). These are illustrated in Figure 8.1-1 and described below.
The components and design elements for both Projects are similar in concept to those of Vineyard Wind 1. Vineyard Wind 1’s project design continues to undergo rigorous independent certification and review, including by a third-party CVA, as is required by BOEM. Avangrid has already advanced through the BOEM process for nominating and approving the CVA for the Projects. Lloyd’s Register was approved for New England Wind 1 by BOEM as the CVA in July 2022 (see Attachment 8.1-1) and for New England Wind 2 in February 2024 (see Attachment 8.1-2). Lloyd’s Register will review and certify that all project facilities are designed, fabricated, and installed in conformance with accepted engineering practices.

Figure 8.1-2 Offshore Wind Energy Generation and Delivery Facilities

8.1.2 Major Equipment Components

The following subsections detail each major equipment component, from concept design to commercial availability and procurement status and strategy. Each component’s proposed design and procurement strategy has been thoroughly reviewed and evaluated by the project engineering team to provide the most optimal and cost-effective solution for delivering the Projects safely and efficiently, and within the identified schedules reflected in Section 9.

8.1.2.1 WTGs

A schematic of a typical WTG of the type planned for the Projects is provided as Figure 8.1-2. A WTG consists of a tower, a nacelle, and a three-bladed rotor connected at the hub. As described in the COP, Avangrid’s design concept for both Projects uses a WTG with a steel tower that has a diameter of about 29 feet (ft) and is bolted to the top of the foundation. The nacelle (housing) and rotor hub are located on top of the WTG tower. Depending on the model used for each Project, the nacelle may contain either a direct-drive or gearbox system, the electrical generator, electric motors to yaw and pitch the WTG, and workspace. The nacelle also contains a full array of instrumentation, controls, fire protection systems and other safety equipment, ventilation and cooling, and ancillary equipment. Wind sensors mounted on top of the nacelle are used to control the yaw and pitch system. The yaw

system turns the nacelle into the wind to maximize power production and out of the wind to maintain the WTG’s safety in high winds. The blade pitch controllers adjust the angle of the blades to optimize power production whilst mitigating loads under the prevailing conditions. The WTGs are envisioned to have a lower rotor tip height of at least 90 ft above Mean Lower Low Water, which will create a uniform tip clearance throughout the Offshore Wind Energy Generation sites and aid in maritime navigation. The Projects will include a nighttime WTG aviation obstruction lighting system controlled by an aircraft detection lighting system, subject to BOEM approval, that complies with Federal Aviation Administration and/or BOEM requirements.

Figure 8.1-3 Wind Turbine Generator
The Projects have undergone an extensive, multi-year procurement process for the WTG, which is the most important decision for an offshore wind project. It is the single largest contract value for both CapEx and operating expenditure (OpEx), determines the annual energy production of the project, and impacts all other balance of plant designs.

8.1.2.2 Foundations

The selection of a foundation concept is one of the most crucial decisions made in offshore wind project design regarding structural resiliency. Avangrid has conducted significant technical and commercial due diligence to develop and de-risk the foundation requirements for the Projects. In addition, Avangrid (independently and through the former Vineyard Wind, LLC, the predecessor for Vineyard Wind 1, LLC) has already completed geophysical and geotechnical surveys in the Lease Area, the results of which have been used in the concept level and advanced foundation designs for the Projects.

The Offshore Wind Energy Generation sites and Offshore Export Cable Corridor (OECC) have been extensively investigated from 2016 through to present day. During these studies, geophysical and geotechnical data was acquired and used to understand the physical characteristics of the surface and sub-surface at the Offshore Wind Energy Generation sites, and along the OECC. Detailed maps and reports have been generated and have supported the planning, design, and engineering of the WTG foundations and ESP foundations. The studies have helped to identify geohazards that could represent design and installation challenges for foundations and electrical transmission cables. Some studies have been repeated to create a time-lapse view of the seafloor and determine the mobility of sediment bodies (e.g. sub-marine sand waves) that move due to the motion of water (currents and storms). It is essential to determine areas of environmental and historical sensitivities, including benthic and fisheries habitats. The geophysical survey method is used on these types of studies, where side-scan images and point cloud data are acquired to build detail surface models. These studies also support the COP and Final Design Report (FDR). Avangrid will complete additional studies prior to construction to identify the presence of surface boulders, debris, and unexploded ordnance. Other specialized studies that use data acquired on the Offshore Wind Energy Generation sites and OECC
include pile drivability assessment, cable burial risk assessment, Facilities Design Report, Fabrication and Installation Report, Bathymetry Digital Terrain Model, Ground Model (describes the physical surface and sub-surface geology, depositional environment, and geohazards), Marine Site Investigation Report, Marine Archeological Resource Assessment, and unexploded ordnance threat risk assessment and mitigation plan. An overview of the studies and reports acquired to date is presented in Table 8.1-2 and summarized in Attachment 8.1-6.

Table 8.1-2 Geophysical and Geotechnical Investigations and Reports

<table>
<thead>
<tr>
<th>Year</th>
<th>Survey Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>Geophysical</td>
<td>Reconnaissance high-resolution geophysical (HRG) survey over the Offshore Wind Energy Generation sites</td>
</tr>
<tr>
<td>2016</td>
<td>Geotechnical</td>
<td>Reconnaissance sampling of soils (boreholes and cone-penetration tests (CPT) over the Offshore Wind Energy Generation sites</td>
</tr>
<tr>
<td>2016</td>
<td>Benthic</td>
<td>Grab samples of surficial sediments over the Offshore Wind Energy Generation sites</td>
</tr>
<tr>
<td>2017</td>
<td>Geophysical</td>
<td>Reconnaissance HRG surveys along the OECC</td>
</tr>
<tr>
<td>2017</td>
<td>Geotechnical</td>
<td>Reconnaissance geotechnical sampling along the OECC</td>
</tr>
<tr>
<td>2018</td>
<td>Geophysical</td>
<td>HRG survey of the northern section of the Offshore Wind Energy Generation sites and along the OECC. Data for design of the offshore wind farm and in support of the COP; archaeological assessment</td>
</tr>
<tr>
<td>2018</td>
<td>Geotechnical</td>
<td>Acquisition of geotechnical data (boreholes and CPT data) at WTG locations and the ESP location for supplement COP submission</td>
</tr>
<tr>
<td>2018</td>
<td>Benthic</td>
<td>Under-water video and still photography along transects in the Offshore Wind Energy Generation sites and along the OECC. Grab samples in the Offshore Wind Energy Generation sites and along the OECC.</td>
</tr>
<tr>
<td>2019</td>
<td>Geophysical</td>
<td>HRG surveys of array cable locations on the Offshore Wind Energy Generation sites and OECC for COP submission, wind farm design and archeological assessment. Site survey for metocean buoy installation</td>
</tr>
<tr>
<td>Year</td>
<td>Survey Type</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2019</td>
<td>Geotechnical</td>
<td>Shallow geotechnical samples from OECC</td>
</tr>
<tr>
<td>2019</td>
<td>Benthic</td>
<td>Under-water video and still photography along transects in the Offshore Wind Energy Generation sites and along the OECC. Grab samples along the OECC</td>
</tr>
<tr>
<td>2020</td>
<td>Geophysical</td>
<td>HRG survey of the Offshore Wind Energy Generation sites for final COP submission and archeological assessment</td>
</tr>
<tr>
<td>2020</td>
<td>Geotechnical</td>
<td>Shallow geotechnical sampling in the Offshore Wind Energy Generation sites and along the OECC. Acquisition of geotechnical data (boreholes and CPT data) at WTG locations and the ESP location for supplement COP submission and future FDR</td>
</tr>
<tr>
<td>2020</td>
<td>Benthic</td>
<td>Under-water video and still photography along transects in the Offshore Wind Energy Generation sites and along the OECC. Grab samples along the OECC</td>
</tr>
<tr>
<td>2021</td>
<td>Geophysical</td>
<td>HRG surveys of array cable locations on the Offshore Wind Energy Generation sites and OECC.</td>
</tr>
<tr>
<td>2021</td>
<td>Geotechnical</td>
<td>Shallow geotechnical sampling in the Offshore Wind Energy Generation sites and along the OECC. Acquisition of geotechnical data (boreholes and CPT data) at WTG locations and the ESP location for supplement COP submission and future FDR</td>
</tr>
<tr>
<td>2021</td>
<td>Benthic</td>
<td>Under-water video and still photography along transects in the Offshore Wind Energy Generation sites and along the OECC. Grab samples along the OECC</td>
</tr>
<tr>
<td>2022</td>
<td>Geotechnical</td>
<td>Acquisition of geotechnical data (boreholes and CPT data) at WTG locations and the ESP location for supplement COP submission and future FDR</td>
</tr>
<tr>
<td>2023</td>
<td>Geotechnical</td>
<td>Acquisition of geotechnical data (CPT) at WTG locations for supplement COP submission and future FDR</td>
</tr>
</tbody>
</table>
Based on these extensive survey efforts, Avangrid produced a Ground Model and several foundation design studies.
Monopile Foundation Concept

A monopile is a single, hollow cylinder fabricated from steel that is driven into the seabed. A TP is installed on top of the monopile using a bolted or grouted connection to connect the top of the monopile to the bottom of the WTG tower. The monopile foundation concept for the Projects is illustrated in Figure 8.1-3.

Figure 8.1-4 Monopile Foundation Concept

Source: New England Wind COP
The values shown in Figure 8.1-3 are approximated maximums and were submitted in the COP.
| | | | | |
|---|---|---|---|
| The foundations will include the following: inter-array cable hang-off supports, corrosion protection systems (both internally and externally), a boat landing or personnel hoist for accessing each WTG, a davit crane(s) to lift tools and parts from the service vessel, marine navigation aids (e.g., identification marking and lights), external and internal platforms (i.e., scaffolding), and various electrical components. |
Scour Protection

Scour protection is installed around each WTG foundation to protect the foundations from scour development, consisting of an armor and filter layer with a preliminary design for a double grading scour protection design (see Attachment 8.1-14) and a single grading scour protection design (see Attachment 8.1-15).
8.1.2.3 Delivery Facilities

Avangrid has performed extensive electrical design and installation studies to mature and optimize the transmission infrastructure for the Projects. These studies have incorporated data gathered within the Offshore Wind Energy Generation sites and along the OECC. Site data, engineering studies, and supplier outreach collectively affirm the highly viable, well-advanced Offshore Delivery Facilities concept for the Projects.

The Projects will utilize a 275 kilovolt (kV) HVAC export cable system and 66 kV alternating current inter-array cables. Avangrid has substantial commercial experience working within the supply chain for all required components and has performed extensive supplier outreach to validate and refine the electrical design and timeline.
A robust design for all the major electrical equipment for the Projects has been developed through multiple detailed electrical studies such as load flow and reactive power compensation, short-circuit and fault in-feed studies and stability studies. All electrical studies ensured compliance with the grid code stipulated by ISO-NE under all operational scenarios.

Dynamic power system stability studies inclusive of voltage, frequency and rotor-angle stability studies have been conducted to verify that the plants remain connected to the network in all the required scenarios without stability issues or causing undesirable grid perturbations.

Furthermore, the Projects have been extensively studied by ISO-NE through the System Impact Studies (refer to Section 6 for more detail). The results indicate that the Projects do not have any significant adverse impact on the ISO-NE’s transmission system after the network upgrades, illustrating the robust design of the Projects.

Inter-Array Cables

Avangrid has developed a complete layout for the Projects, which includes the expected inter-array cable design to connect the WTGs to the ESP (Figure 8.1-5). The 66 kV inter-array cables are three-core copper (Cu) or aluminum (Al) cables manufactured and installed within a single steel armored bundle. The Projects will use copper and aluminum conductors based on the electrical design studies with forecasted commodity rates affecting supply prices in the market.
Based on the expected maximum output current of each WTG and the cable current carrying capacity, the following cable size and lengths have been determined to achieve required electrical performance for the Projects in a cost-efficient way. The cable lengths are based on engineering analysis by inter-array cable EPCI suppliers participating in the New England Wind 1 and New England Wind 2 procurement processes and confirmed by the Avangrid engineering team. The cable cross-sections and lengths were optimized to achieve the necessary ampacity at the lowest supply costs by using primarily aluminum cable cores and minimizing the cross-section size as much as possible (see Attachment 8.1-17 and Attachment 8.1-18).

To assess the installation of the inter-array cable design, Avangrid completed a Geotechnical Interpretation Report (see Attachment 8.1-19), Cable Burial Risk Assessment (see Attachment 8.1-20), and Seabed Mobility Study (see Attachment 8.1-21). These studies were used to develop the inter-array cable layout and design, validating the installation feasibility for the methods proposed by the potential contractors.

ESP and MEQ
In addition, significant pre-work has been completed for both New England Wind 1 and New England Wind 2 to understand the electrical losses based on the generating capacity of each Project at the POI. The steady-state power and energy losses were evaluated using a detailed power flow model of each facility for review of the electrical system. The electrical loss studies for New England Wind 1 (Attachment 8.1-24) and New England Wind 2 (Attachment 8.1-25) are included for reference.
Onshore Export Cables

The New England Wind 1 and New England Wind 2 offshore export cables will be brought to shore and buried in transition vaults located at the landfall site. Within the transition vaults, the offshore export cables will connect to the onshore export cables. The onshore export cables will then transmit power from the landfall site to the onshore substation. The onshore export cables will consist of 275 kV cross-linked polyethylene cables buried underground along the onshore export cable route, as described in Section 6. The onshore export cables will be installed in an underground duct bank (i.e., an array of plastic conduits encased in concrete, providing the necessary mechanical protection and thermal conditions for cable operation). Avangrid has confirmed the viability of the onshore routing installation concept for roadway and utility conditions through third-party design studies, included as attachments to Section 6.

An underground 345 kV transmission line will connect the onshore substation to the POI in West Barnstable. Based on the anticipated route from the onshore substation to the POI, this connection is expected to take the form of buried cables in a concrete duct bank. These cables will be designed in accordance with all applicable infrastructure standards and will be no different than existing 345 kV transmission lines.

New England Wind 1 Onshore Civil Works and Duct Bank Engineering Progress

The duct bank design and installation concepts for both Projects, especially New England Wind 1, require coordination with the Town of Barnstable, Centerville-Osterville-Marstons Mills Water Department, and National Grid for sewer, water, and gas utility lines, respectively.
Utility relocations and coordination is ongoing for detailed design and construction schedule sequencing.

<table>
<thead>
<tr>
<th>Table 8.1-8</th>
<th>New England Wind 1 Duct Bank Detailed Design Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 8.1-9</th>
<th>New England Wind 1 Water Main Detailed Design Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To inform the conceptual and detailed designs for the onshore duct bank and HDD, geotechnical investigations were performed. An initial report was conducted for the purposes of the HDD. The investigation included subsurface exploration and laboratory testing services to provide information on the subsurface soil conditions. The scope of services included moisture content, grain size distribution, Atterberg limits, organic content, corrosivity testing, thermal resistivity, and unconfined compression and consolidation tests.

The subsurface conditions were characterized and included in the report as Attachment 8.1-34 and shown as Figure 8.1-11.
performed a geotechnical investigation for New England Wind 1 along the onshore cable route from the onshore cable landing (Craigville Beach) to the onshore substation location. The report is provided as Attachment 8.1-36. The report also contains laboratory and field test data for the geotechnical and thermal properties of the onsite soils. Soil abrasivity, direct shear, thermal conductivity, Atterberg limit, particle size analysis, and moisture content tests were performed. The results detailing thermal properties, organic layers, and other areas of concern were used to inform progression of detailed design and cable sizing. Table 8.1-11 shows summary depth to ground water for various borings along the duct bank route.
The geotechnical investigation for the onshore duct bank (Attachment 8.1-36) is applicable to the onshore substation. In addition, the topographical land title survey is included as Attachment 8.1-41.
A stormwater management report was completed to inform design and compliance (see Attachment 8.1-42). The proposed system will meet or exceed the Massachusetts Stormwater Policy recommendations and will comply with MassDEP Stormwater Standards.

These design activities will serve to benefit New England Wind 2 as well, as a similar onshore substation can be expected for the Project. Ultimately, the detailed substation design will be completed by the EPC contractor, coordinating with MEQ detailed design and additional site investigations such as test pits.

8.1.3 Equipment Manufacturers

Avangrid has leveraged its experience from developing and completing the Vineyard Wind 1 procurement process to identify cost-effective opportunities to use and support the offshore wind supply chain that is emerging along the US East Coast, particularly within New England.

As described earlier in this section, both Projects have progressed through multiple rounds of advanced competitive procurement.

8.1.4 Equipment Acquisition Status

The project procurement schedules (see Section 9) incorporate the experience
gained from Vineyard Wind 1, which was the first commercial-scale offshore wind project in the US to complete a procurement process. This experience significantly enhances Avangrid’s precision in developing the cost and timeline underlying the New England 1 and New England 2 proposals.

8.1.5 Equipment Contracting

As mentioned, Avangrid has matured its procurement process significantly for both Projects. For both Projects, Avangrid is using a multi-contract strategy that allows for multiple EPCI suppliers to cover the supply and installation of the project components across multiple packages. The final contract configuration will be subject to market availability and pricing at the time of contract signing.

Figure 8.1-16

Avangrid’s procurement process builds on the strategies implemented for Vineyard Wind 1, creating and leveraging synergies where possible between the projects.
The procurement timeline accounts for:

- availability of site conditions assessment data and design timelines;
- interdependencies between different equipment design and selection processes;
- availability of (ISO-NE) System Impact Reliability Study and related grid interconnection requirements;
- BOEM and CVA certification timelines;
- manufacturing and transportation lead times;
- risk of limited availability of suitable Jones Act compliant vessels and specialized equipment;
- the expected PPA award date, financing process, and expected date for FC; and
- the planned construction schedule, including permitting restrictions.

Section 9 provides more detail on the project procurement schedules. Information regarding how Avangrid intends to increase diversity in the offshore wind supply chain through the procurement process is detailed in Section 13.
Avangrid’s equipment procurement strategy builds on the successful approach deployed for Vineyard Wind 1, and the extensive dialogue Avangrid has had with major suppliers. This dialogue includes detailed engagement with engineering departments from dozens of Tier 1 suppliers who contributed to Vineyard Wind 1’s supply packages, Avangrid’s other global affiliate projects, supply chain, and more.

Table 8.1-12 outlines key factors that Avangrid considers when procuring equipment for the Projects.
<table>
<thead>
<tr>
<th>Equipment Manufacturer Selection Factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2. **Key Equipment Suppliers Under Consideration**

If the bidder has not yet selected the major equipment for a project, please provide a list of the key equipment suppliers under consideration.

As described in Section 8.1., the Projects have progressed through multiple rounds of advanced competitive procurement and have selected preferred suppliers for several major equipment manufacturers. As with past projects, Avangrid will continue to push for collaboration directly and indirectly between principal (Tier 1) suppliers and Tier 2 and Tier 3 local suppliers and seek to localize as much as possible. See Section 13 for details on local and domestic supply chain commitments.

8.3. **Commercial Operation of Equipment**

Please identify the same or similar equipment by the same manufacturer that are presently in commercial operation including the number installed, installed capacity and estimated generation for the past three years.

A general overview of the equipment track record for each project component is provided in Section 8.1.6. Specifically with respect to WTGs, the Projects will use the most advanced and economical technology available for delivery and commercial operation. Table 8.3-1 summarizes the deployment status of each major supplier’s previous and current models, per data that is publicly available as of December 2023.
Table 8.3-1 WTG Deployment Status

<table>
<thead>
<tr>
<th></th>
<th>General Electric</th>
<th>Siemens Gamesa</th>
<th>Vestas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years 2015-2022 (Actuals)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity Installed (GW)</td>
<td>1.1</td>
<td>21.9</td>
<td>8.3</td>
</tr>
<tr>
<td>Number Installed</td>
<td>219</td>
<td>4,148</td>
<td>1,600</td>
</tr>
<tr>
<td>Years 2023-2028 (Forecast)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity Installed (GW)</td>
<td>7.5</td>
<td>24.2</td>
<td>6.9</td>
</tr>
<tr>
<td>Number Installed</td>
<td>568</td>
<td>2,082</td>
<td>475</td>
</tr>
</tbody>
</table>

8.4. Technology Maturity and Financial Considerations

For less mature technologies or equipment, provide evidence (including identifying specific applications) that the technology or equipment to be employed for energy production is ready for transfer to the design and construction phases.

Address how the status of the technology or equipment is being considered in the financial and permitting plans for the project.

Provide the status of testing/qualification for any equipment in development.

The technology and equipment that will be deployed for the Projects are considered mature because they have a long track record in the offshore wind industry, and similar technology is currently being deployed for Vineyard Wind 1, as detailed in Sections 8.1 and 8.3. Further, all equipment will be manufactured by or with the involvement of industry leaders. As part of the financing process, an in-depth review of the applied technologies will be performed and taken into consideration when designing the project schedules (see Section 9). Similarly, third-party reviews of the engineering plans will be conducted by potential lenders and tax equity investors, based on Avangrid's experience with the FC of Vineyard Wind 1.

In addition, the Projects will incorporate a robust Design Review and Assurance process to ensure all proposed technology will be advanced and mature for energy production as proposed in the New England Wind COP. For any first article applications, a Technology Readiness Level will be assessed and evaluated based on relevant qualification data and provided type certifications by the OEM. The overall design and technical evaluation are also certified by an independent third-party (the CVA) as required by BOEM with the verification completed under the direct supervision of a registered Professional Engineer.
8.5. Completeness of Equipment List and Identification of Uncertainties

Please indicate if the bidder has a full and complete list of equipment needed for all physical aspects of the bid, including generation facilities, turbine support structures, electrical platforms, delivery facilities, and mandatory and voluntary transmission system upgrades.

If not, identify the areas of uncertainty and when the full and complete list of equipment will be identified.

Section 8.1 provides a complete list of all major equipment needed for all physical aspects of the Projects.

As detailed in Section 6, the grid interconnection and planning studies that have been completed to date indicate that transmission system upgrades are required at the planned interconnection point. Avangrid has incorporated the results of the studies performed by ISO-NE to-date and other relevant considerations into this preliminary engineering plan. Please refer to Section 6 for more details.

8.6. Equipment Acquisition

Please indicate if the bidder has secured its equipment for all physical aspects of the bid, including generation facilities, delivery facilities, and mandatory and voluntary transmission system upgrades. If not, identify the long-lead equipment and describe the timing for securing this equipment.
9. Project Schedule

A bidder must demonstrate that its proposal can be developed, permitted, financed, and constructed and be technically viable within a commercially reasonable timeframe. The bidder is required to provide sufficient information and documentation that shows that the bidder’s resources, process and schedule are adequate for the acquisition of all rights, permits and approvals for all aspects of the project and for the financing of the project consistent with the proposed project milestone dates.

Bidders are required to provide a complete critical path schedule for the project from the notice of selection of the project for contract consideration to the start of commercial operations. For each project element, list the start and end date. The proposal must include a schedule with reasonable detail that demonstrates that the bidder has provided sufficient time for the application for, and receipt of, necessary permits, approvals, other commitments, project financing, completion of design work, and equipment procurement and construction in order to credibly complete the project reasonably consistent with the proposed Commercial Operation Date, meaning that the project is more likely than not to come online by the date that is projected within the proposal. The bidder should include critical milestones in its markup to the Form PPAs that are consistent with its proposal and are reasonably achievable.

Advancing Vineyard Wind 1, the first large-scale offshore wind project in the nation, has provided Avangrid (or “the Company”) significant insight into US—and New England-specific—offshore wind project permitting, procurement, and installation timelines, as well as lessons learned for efficiency opportunities and schedule risks. Based on Avangrid’s and its affiliates’ extensive experience with offshore wind project development, financing, and construction, the team has created a robust two-stage plan to develop and construct New England Wind 1 and New England Wind 2 (the Projects). The schedule for New England Wind 1 is depicted in Figure 9.0-1 and the schedule for New England Wind 2 is depicted in Figure 9.0-2. Large-scale versions of both schedules are provided as Attachments 9.0-1 and 9.0-2 for the reader’s convenience.

1 Vineyard Wind 1 is a 50/50 joint venture with Copenhagen Infrastructure Partners P/S. Vineyard Wind 1 has obtained permitting approval at the federal and state levels, concluded procurement and contracting for all major contract packages, finalized interconnection agreements, successfully implemented a financing plan, and begun construction and operation activities.

This section outlines the critical path to achieving commercial operation and also illustrates how the schedules for the Projects are significantly de-risked and uniquely advantaged by the advanced permitting status and targeted and robust supplier engagement of both Projects. New England Wind I undoubtedly has the most certain, lowest-risk schedule of any uncontracted project in the region, having already:

- signed a Large Generator Interconnection Agreement (LGIA) with Eversource for interconnection in West Barnstable, as well as a host community agreement for landfall and onshore routing and siting with the Town of Barnstable (Barnstable) (see Section 6);
- secured all its critical state, regional, and local permits and expects remaining federal permits by Q3 2024 (see Section 7);
9.1. Critical Path Schedule

Identify the elements on the critical path. The schedule should include, at a minimum, preliminary engineering, financing, acquisition of real property rights, Federal, state and/or local permits, licenses, environmental assessments and/or environmental impact statements (including anticipated permit submittal and approval dates), completion of interconnection studies and approvals, procurement, facility contracts, start of construction, construction schedule, and any other requirements that could influence the project schedule and the commercial operation date.

In developing the New England Wind 1 and New England Wind 2 schedules, Avangrid identified key milestones and mapped out the subsequent workstreams needed to meet them successfully. Through this process, Avangrid identified the critical path, or the longest sequence of tasks required to achieve commercial operation.

Avangrid has extensive experience from managing these scopes for Vineyard Wind 1 and has significantly advanced commercial dialogue with key suppliers over the last several years to ensure that the supply chain is able to support manufacturing and installation within the necessary periods.

9.1.1 Avangrid Project Critical Path Schedule Advantage
9.1.2 New England Wind 1 Critical Path Schedule Certainty

9.1.3 Strong Confidence in the Non-Critical Path

As detailed in Section 7, several key development and permitting milestones have already been achieved or are progressed enough such that they are not considered to be critical path activities. New England Wind 1 and New England Wind 2 are jointly progressing through the federal permitting process, which is expected to effectively conclude in Q3 2024. In July 2020, the project team submitted the New England Wind Construction and Operations Plan (COP)3 to the Bureau of Ocean Energy Management (BOEM), which was reviewed and deemed complete by BOEM and other consulting federal agencies. BOEM issued a Notice of Intent to prepare an Environmental Impact Statement on June 30, 2021. Public scoping meetings were held in July 2021. BOEM issued the Notice of Availability of the Draft Environmental Impact Statement (DEIS)4 on December 23, 2022, opening a 60-day public comment period. The input received via this process informed the Final Environmental Impact Statement (FEIS)5, which was published on March 1, 2024, and is anticipated to be followed by the Record of Decision (ROD) on April 1, 2024, and full COP approval for both Projects on July 1, 2024.6

9.1.4 Summarized Key Project Activities and Critical Path Activities

Table 9.1-1 summarizes key elements of New England Wind 1's schedule, including critical path activities.

Table 9.1-1 New England Wind 1 Key Project Activities and Critical Path Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Table 9.1-1 New England Wind 1 Key Project Activities and Critical Path

Activities
Table 9.1-1 New England Wind 1 Key Project Activities and Critical Path Activities
Table 9.1-1 New England Wind 1 Key Project Activities and Critical Path Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Activity</td>
<td>18 weeks</td>
</tr>
<tr>
<td>Activity</td>
<td>24 weeks</td>
</tr>
<tr>
<td>Activity</td>
<td>36 weeks</td>
</tr>
<tr>
<td>Activity</td>
<td>42 weeks</td>
</tr>
<tr>
<td>Activity</td>
<td>52 weeks</td>
</tr>
</tbody>
</table>

Additional notes on project timeline and critical path:
- Activity 1 is the earliest start activity.
- Activity 5 is the latest end activity.
- The critical path includes activities: Activity 1 -> Activity 2 -> Activity 3 -> Activity 4.
Table 9.1-1 New England Wind 1 Key Project Activities and Critical Path Activities
Table 9.1-1 New England Wind 1 Key Project Activities and Critical Path Activities

Table 9.1-2 summarizes key elements of the Project schedule for New England Wind 2, including critical path activities.

Table 9.1-2 New England Wind 2 Key Project Activities
Table 9.1-2 New England Wind 2 Key Project Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Permit</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>Activity Description</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Activity 1</td>
<td></td>
</tr>
<tr>
<td>Activity 2</td>
<td></td>
</tr>
<tr>
<td>Activity 3</td>
<td></td>
</tr>
<tr>
<td>Activity 4</td>
<td></td>
</tr>
<tr>
<td>Activity 5</td>
<td></td>
</tr>
</tbody>
</table>

Table 9.1-2 New England Wind 2 Key Project Activities
9.2. Status of Permitting, Assessments, and Right Acquisition

Describe and demonstrate that the project is more likely than not to come online by the commercial operation date that is projected within the proposal, as evidenced by documents filed by the bidder showing the following:

- Commencement of permitting processes
A plan for completing all permitting processes
Viable resource assessment
Environmental assessment
Viable financing plans along with detailed information requested in 2.2.2.3
Viable installation and electrical interconnection plans
Material progress towards the acquisition of all real property rights
Evidence of material vendor activity.

The following section provides evidence of material activity in permitting, resource assessment, environmental assessment, financing, interconnection, acquisition of property rights, and procurement/contracting of major components. Avangrid has validated this scheduling approach with key stakeholders and suppliers providing confidence to deliver the Projects in the proposed timelines. Avangrid is confident that both Project schedules are achievable and that external risk to the schedules will be mitigated to the extent possible.

9.2.1 Permitting Plan Status

Avangrid has significantly progressed in acquiring permits at the state and regional level. All critical state, regional, and local permits for New England Wind 1 were obtained by February 2024, with one appeal to the EFSB Final Decision (which was issued December 18, 2023) currently pending. The schedule includes sufficient float between receipt of all permits and FC which would accommodate unanticipated permitting delays. A summary of the permits received to date and plan to complete the remainder of the permitting processes required for New England Wind 1 and New England Wind 2 is provided herein; additional details are provided in Section 7.

9.2.1.1 Federal Permits

In July 2020, the project team submitted the New England Wind COP to BOEM, which was reviewed and deemed complete by BOEM and all relevant federal agencies. BOEM issued a Notice of Intent to prepare an EIS on June 30, 2021. Public scoping meetings were held in July 2021. BOEM issued the Notice of Availability of the DEIS on December 23, 2022, opening a 60-day public comment period. BOEM issued the FEIS for the New England Wind COP in March 2024 and is expected to issue the ROD on April 1, 2024. All critical federal permits are expected to be issued by July 1, 2024.

9.2.1.2 State, Regional, and Local Permits

New England Wind 1

The major state permitting for New England Wind 1 is complete, making it the only uncontracted project interconnecting in New England to have achieved its required state, regional, and local permits.
New England Wind 2

Over the last several years, Avangrid has established strong working relationships with regulators and stakeholders that are critical to ensuring a timely and successful state permitting process for New England Wind 2, which is actively ongoing. The experience of completing the permitting for both Vineyard Wind 1 and New England Wind 1 gives Avangrid strong confidence in the requirements and the timeline needed to complete the process for New England Wind 2. The following list outlines progress for New England Wind 2:

- Avangrid filed a petition with the EFSB on November 1, 2022, to construct the onshore export cable, duct bank, and onshore substation. (A copy of the New England Wind 1 EFSB approval is provided as **Attachment 7.2-2**.)

- The Massachusetts Environmental Policy Act (MEPA) review for New England Wind 2 was initiated by an ENF filing on September 30, 2022. The draft Environmental Impact Report (EIR) was subsequently filed on July 14, 2023; a certificate for the New England Wind 2 draft EIR and scope for the final EIR were received on October 11, 2023.

- The Massachusetts Coastal Zone Management program reviewed the consistency of the Projects with the enforceable coastal policies of the state. The process was initiated in Q3 2022, and a decision of full concurrence was issued on November 9, 2023. Similarly, the Rhode Island Coastal Resources Management Council reviewed consistency of the Projects with the enforceable coastal policies of Rhode Island. The process was initiated in Q3 2022, and a decision of full concurrence was issued on October 19, 2023. These processes were conducted concurrently with BOEM’s federal review process for the lease area.

- Avangrid filed a Developments of Regional Impact (DRI) application with the Martha’s Vineyard Commission (MVC) on December 13, 2023.

- Work in waters off Nantucket and Edgartown (offshore) and within Barnstable (offshore and onshore) require an Order of Conditions from each of the Nantucket, Edgartown, and Barnstable conservation commissions, respectively. The Nantucket Order of Conditions for New England Wind 2 was received on December 18, 2023. A Notice of Intent for New England Wind 2 was filed in Edgartown on November 2, 2023.
9.2.2 Resource Assessment

Avangrid has completed a comprehensive wind resource assessment of Lease Area OCS-A 0534, provided in Section 4 that builds on comprehensive data collection from two Floating Light Detection and Ranging (FLiDAR) buoys deployed by Avangrid or its affiliates. From May 2018 through May 2020, the Vineyard Wind joint venture (the predecessor for Vineyard Wind 1 LLC) completed a two-year deployment of a FLiDAR in Lease Area OCS-A 0501, which has since been segregated into Lease Areas OCS-A 0501 and OCS-A 0534. The specific location of the FLiDAR yielded a dataset that is fully applicable for use in mesoscale modeling for the entirety of Lease Areas OCS-A 0501 and OCS-A 0534 without the need for scaling methods. The two-year onsite wind measurement data provided a solid basis for energy production estimates. As of November 2023, Avangrid is able to further refine these estimates and reduce any (already limited) uncertainty by using data collected by its second FLiDAR, which was deployed in May 2023 just south of Lease Area OCS-A 0534. Additional details on this extremely sophisticated wind resource assessment can be found in Section 4.

9.2.3 Environmental Assessment

As part of the New England Wind COP, Avangrid has completed a thorough review of existing literature and site-specific data to characterize the species and habitats potentially affected by the two Projects. Avangrid has also already analyzed the potential effects of the Projects to physical, atmospheric, and biological resources and identified avoidance, minimization, and mitigation measures in consultation with regulators and stakeholders. This comprehensive environmental impact assessment is provided in Volume III of the New England Wind COP.

Avangrid thoroughly analyzed the potential effects of the Projects on commercial and recreational fisheries; this analysis also cataloged and identified measures to avoid, minimize, and mitigate potential impacts. An assessment of the analysis and the influence of expertise gained during the Vineyard Wind 1 permitting process can be found in Sections 7.5 and 7.6 of the New England Wind COP Volume III.

Appendix III-I of the New England Wind COP presents the Navigation Safety Risk Assessment, which analyzes existing fishing vessel use within the region surrounding the Projects and presents measures to mitigate impacts to navigation during construction and operations. Appendix III-N of the New England Wind COP includes draft estimates of economic exposure to commercial fisheries resulting from New England Wind.

Avangrid’s industry-leading efforts to develop environmental protection measures and initiatives that proactively conserve threatened and endangered species are further described in the Environmental Mitigation Plan provided as Attachment 7.5-1, which details information on Avangrid’s measures to avoid, minimize, and mitigate potential impacts on environmental resources. It also demonstrates Avangrid’s commitment to addressing challenging circumstances and maintaining productive working relationships with environmental stakeholders.

7 Lease Area OCS-A 0534 was originally part of Lease Area OCS-A 0501, which was segregated into two lease areas by the Bureau of Ocean Energy Management in June 2021. Lease Area OCS-A 0501 is the location for the Vineyard Wind 1 project. Lease Area OCS-A 0534 is the location of New England Wind 1 and New England Wind 2.
9.2.4 Viable Financing Plan

9.2.5 Installation and Electrical Interconnection Plans

Installation and electrical interconnection plans for the two Projects are detailed below.

9.2.5.1 Installation

9.2.5.2 Interconnection

New England Wind 1 will utilize QP 700, for which Avangrid already has an associated LGIA executed with Eversource.

9.2.6 Progress Towards Real Property Rights Acquisition

Avangrid has secured most of the real property rights, or has instruments to obtain the real property rights, required for the two Projects.

9.2.6.1 Onshore

For New England Wind 1, Avangrid has executed a host community agreement (HCA) with Barnstable (HCA-2 [Attachment 6.1-2]) to facilitate local siting and permitting of the landfall site, onshore export cable route, onshore substation site, and grid interconnection route. Avangrid has full site control over the New England Wind 1 onshore substation site and other key properties needed to facilitate interconnection. Details about the status of acquiring real property rights for New England Wind 1 can be found in Section 6. HCA-2 and all documentation demonstrating site control can be found in the attachments to Section 6.

9.2.6.2 Ports

Avangrid has executed agreements guaranteeing site access and exclusivity for the major port needed for construction, as described in Section 10, including a lease agreement with Crowley Wind Services for WTG marshalling and an option agreement with Foss Marine Terminal for construction logistics. The Company is in advanced stages of acquiring the real property rights for all other marine terminal and/or waterfront facilities that will be used during the construction of the Projects. Avangrid is in advanced stages of acquiring the real property rights for all other marine terminal and/or waterfront facilities that will be used during the construction of the Projects. Avangrid has met with the owners or managers of each of these facilities to discuss how their terms and scheduling procedures could accommodate the resource needs and timeline of Avangrid’s construction plans. Option agreements for marine terminal facilities will be executed as full lease agreements for the Projects prior to FC, in accordance with the Project schedules. There is sufficient flexibility in the schedules for various marine terminal and/or waterfront property acquisition and development timelines.

9.2.7 Evidence of Material Vendor Activity
Since 2016, Avangrid has been developing and analyzing potential strategies to secure the essential logistics, ports, and vessel solutions for US offshore wind projects. Securing access to appropriate vessels and identifying logistical solutions are essential to the successful and efficient deployment of an offshore wind project. Avangrid has invested considerable resources into understanding potential manufacturing and logistical solutions to ensure the timely procurement of WTGs, foundations, MEQ, ESPs, export and inter-array cables, vessels, and other long lead-time components in high demand. This information, combined with benchmark data from the Company’s projects and the supplier engagement to date, formed the basis of an extensive modeling exercise involving multiple scenarios and potential concepts. Between that and the significant vendor engagement to date, the Company is confident about which aspects of the supply chain will play a role in the critical path and how to minimize associated risk.

9.3. Maritime Vessels and Logistics

Include a discussion on use of maritime vessels and access to them, as well as the bidder’s plans to secure any specialized vessels or other equipment consistent with the A-31 construction schedule.

Provide any agreements, options, or other materials reflecting the bidder’s efforts so far to secure such vessels or other equipment (and any letters of intent to the extent signed agreements are not in place).

Also include a description and discussion of the laydown facility/facilities to be used for construction, assembly, staging, storage, and deployment.

Through its participation in the Vineyard Wind joint venture, Avangrid has developed and analyzed options to secure strong port and vessel solutions for offshore project logistics. Securing access to appropriate vessels and addressing their logistical needs is essential to the successful and on-time deployment of an offshore wind project. While these efforts can be more complicated in the US compared to the European market as a result of Jones Act restrictions and supply chain limitations, Avangrid has learned lessons on overcoming these challenges from Vineyard Wind 1 and the years spent developing New England Wind 1 and New England Wind 2 and has a strong strategy to overcome such challenges.

Avangrid has engaged with primary US and European-based installation contractors. The objective of these interactions has been to assess potential options for cost-effective and reliable logistic solutions that consider Jones Act restrictions, harbor access clearances, and terminal space limitations along the US East Coast.
Robust solutions have been identified for each scope, and Avangrid is confident that multiple market solutions exist and are available in the timeframe of the Projects. Further detail, including information on marine vessels and port facilities, can be found in Section 10.

Table 9.3-1 Maritime Vessels and Logistics
9.4. Status of Critical Path Elements

Detail the status of all critical path items, such as receipt of all necessary siting, environmental, and ISO-NE approvals.

Avangrid’s approach to schedule development considers potential permitting or construction delays and includes significant incremental float across the development and construction phases. The timeline to complete permitting prior to FC is realistic and has a flexible FC window to accommodate unforeseen restraints. The Project schedules include additional float for long lead-time components, as well as adverse weather conditions that could impact installation activities.

Avangrid has previously validated this scheduling approach with key suppliers for Vineyard Wind 1. Continued analysis of the logistical approach, in consultation with suppliers, has yielded additional insight into the Company’s ability to deliver the Projects on the proposed timelines. Avangrid can accelerate certain activities to accommodate potential future challenges, creating additional float beyond what is already included in the schedule. Avangrid is confident that this added flexibility will keep the Project schedules on target.
9.4.4 Key Activities Not on the Critical Path

9.4.4.1 Permitting

Permitting is not presently on the critical paths but is still a key activity. As detailed in Section 7, Avangrid has successfully completed all critical state, regional, and local permitting processes for New England Wind 1 and is now following a nearly identical process for New England Wind 2, as detailed in Table 9.1-2.

9.4.4.2 Interconnection

The ISO-NE interconnection process is not presently on the critical path but is still a key activity. For QP 700 for New England Wind 1, the SIS was published in December 2020, the Transmission Service Agreement was executed in March 2022, and the LGIA was executed in September 2022. The Federal Energy Regulatory Commission has approved this interconnection.
10. Construction & Logistics

Avangrid is a pioneering leader in offshore wind project development and construction in the US, with extensive experience in US renewable energy development through our land-based power and wind projects, and in the offshore sector as co-owner and operator of Vineyard Wind 1, the first commercial-scale offshore wind project in the US. As discussed in Section 12, Avangrid also has the benefit of being part of a strong network of affiliates that have experience developing and constructing projects across Europe, South America, and East and Southeast Asia, allowing New England Wind 1 and New England Wind 2 to leverage significant knowledge, experience, history, and lessons learned. The construction and logistics plan for the Projects, detailed in this section, addresses the necessary arrangements and processes for outfitting, assembly, storage, and deployment of major project components. Avangrid validated the construction and logistics plan by engaging and coordinating with suppliers and conducting a detailed logistical analysis across multiple installation and downtime scenarios, incorporating over 35 years of site-specific meteorological and oceanic data.

The construction and logistics plan for the two Projects is at a mature stage due to the collective resources and experience of Avangrid and the Iberdrola Group. A fully staffed engineering, procurement, construction, and installation (EPCI) team is dedicated to the development of the Projects; their experience is detailed in Section 12. This team has been advancing the project strategy within Lease Area OCS-A 0534 (the Lease Area) since 2020 and has worked closely with the Vineyard Wind 1 EPCI team to develop a detailed construction methodology and schedule that aligns with supply chain considerations, vessel, and port availability (including Jones Act requirements), and anticipated permitting requirements (e.g., seasonal restrictions). While certain aspects of the construction and logistics plan have already been submitted to BOEM as part of the New England Wind Construction and Operations Plan\(^1\), the construction and logistics plan described herein has been updated for this submission to incorporate additional detail on experience, procurement status, and other elements specific to the proposals for both Projects.

The construction and logistics strategy for both Projects incorporates several key local content initiatives providing a number of critical advantages and benefits compared to other offshore wind projects, which are summarized below. These initiatives will bring numerous jobs and other long-term economic development benefits, as is discussed in greater detail in Section 13.

Local Content Initiatives for Construction and Logistics

The construction and logistics strategy incorporates several key initiatives to enhance local content, create jobs, and provide lasting economic impacts to Massachusetts and New England. The initiatives summarized in this section provide a number of critical advantages and benefits in comparison to other offshore wind projects. Emphasizing community involvement and local development, the construction and logistics plan results in the attraction of new suppliers and manufacturers to the region and increases the participation of local businesses and workers in the offshore wind industry.

to stage and marshal from Massachusetts ports and facilities, represent a unique opportunity to build a new industry in Massachusetts and will deliver substantial and meaningful long-term economic benefits. All of the marshalling of wind turbine generator (WTG) components for the Projects will be from Massachusetts port facilities, as will the construction logistics and large portions of operations and maintenance (O&M) activities. In committing to marshal, develop, and operate the majority of the offshore wind projects from Massachusetts ports, Avangrid is committing to maximizing the economic, social, and positive environmental impacts of the Projects for Massachusetts and Massachusetts residents.

Additionally, nearly all of the facilities selected by Avangrid to support the construction of the Projects are shuttered former coal- and oil-fired power plants or historic brownfields facilities. The redevelopment and use of these facilities not only creates local content jobs and supports local companies, but also transitions some of the most impaired and contaminated sites in New England into rehabilitated beneficial use facilities that significantly benefit the clean energy revolution. Additional detail of all primary port and waterfront facilities, including renderings of several facilities, is included in Section 13.

Primary local ports and facilities that will be used to stage, assemble, and deploy New England Wind 1 and New England Wind 2 include:

- **Salem Offshore Wind Terminal, Salem, MA**—Avangrid is partnering with marine transport and logistics company Crowley Wind Services² (Crowley) to facilitate the development of Massachusetts’ second purpose-build construction staging and marshalling port in Salem. Crowley is developing the port facility in conjunction with the City of Salem as a partner, and under ownership by the Massachusetts Clean Energy Center (MassCEC). Avangrid will serve as the anchor tenant with its New England Wind 1 and New England Wind 2 Projects, which provide the long-term lease needed for Crowley to finance the port redevelopment. The facility will fill the critical role of storage and marshalling site for the offshore construction of the WTGs needed for the two Projects. It will provide an unprecedented opportunity for Salem and the entire region to participate in the growth of US offshore wind. Avangrid expects that the new facility will attract other international and global entities to settle in the region to take advantage of the opportunities these port developments will provide.

² Crowley is one of the nation’s leading owner and operator of tugs, barges, and other vessels as well as a leading provider of terminal management, marine transportation, logistics, and naval architecture and engineering services.
10.1 Project Steps

Please list the major tasks or steps associated with deployment of the proposed project and the necessary specialized equipment (e.g. vessels, cranes).

The main offshore wind components of New England Wind 1 and New England Wind 2, as well as the installation processes and logistics considerations for those components, are included in Section 10.1.1 below. As outlined above and detailed in Section 13, Avangrid expects the installation activities and logistics associated with those activities to generate significant local content and supply chain opportunities.

The deployment of the Projects consists of six main work packages:

1. WTG Foundations – Monopiles, Jackets, and Transition Pieces (TPs); and also Scour Protection;
2. Electrical service platform (ESP);
3. Offshore export cables;
4. Inter-array cables;
5. WTGs; and
6. Onshore works (including Marine to Shore Cable, Onshore Substation, and Onshore Cables).

The project schedules, provided in Section 9, detail the planned sequence of the major tasks for these work packages. When developing the schedules, Avangrid conducted a detailed logistical analysis for multiple installation scenarios. The analysis examined various vessel spreads and the potential use of different harbors and their respective operational and load-out capabilities. The results of the analysis, in combination with the procurement activity done to-date, allowed Avangrid to develop a robust construction and logistics plan.

The transportation and installation (T&I) vessel spread terminology used in this section are defined in Table 10.1-1. An overview of the major tasks associated with deployment of the Projects, including the specialized equipment required to complete each of the work packages, is outlined in Section 10.1-1.

Table 10.1-1 Installation Vessels and Technologies Definitions

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th>Description</th>
<th>Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder Vessel</td>
<td>Transportation from US harbors to the Offshore Wind Energy Generation site using Jones Act compliant vessels; oceangoing tugs are required for long distances</td>
<td>• Jack-up feeder vessels
• Tugs
• Articulated tug barges (ATBs)
• Feeder Barges</td>
</tr>
<tr>
<td>Vessel Type</td>
<td>Description</td>
<td>Technologies</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Transport Barge</td>
<td>Transportation from overseas manufacturers' fabrication facilities to the Offshore Wind Energy Generation site or for movement of components from ports in the US or non-US port for staging. Can involve the use of US-flagged or non-US-flagged vessels depending on the Coastwise situation; oceangoing tugs are required for long distances</td>
<td>• Tugs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Barges</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ATBs</td>
</tr>
<tr>
<td>Heavy Transport Vessel (HTV)</td>
<td>General transport vessel for foundations, the ESP, WTGs, cables, and other project equipment from the manufacturer site to the Offshore Wind Energy Generation site or staging port</td>
<td>• Semi-submersible HTVs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Heavy transportation vessels with cranes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transportation vessels (without craneage capability)</td>
</tr>
<tr>
<td>Heavy Lift Vessel (HLV)</td>
<td>Expected installation vessel for the ESP and possibly foundations</td>
<td>• Dynamically positioned (DP) or anchored HLVs with cranes (higher capacity than HTVs with cranes)</td>
</tr>
<tr>
<td>Wind Turbine Installation Vessel (WTIV)</td>
<td>Expected installation vessel for WTGs and possibly foundations</td>
<td>• Typically jack-up installation vessel(s) with cranes</td>
</tr>
<tr>
<td>Cable Installation Vessel</td>
<td>Large vessels that contain specialized cable spools for transport and payout of cable during installation</td>
<td>• Cable laying vessel(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cable transport vessels</td>
</tr>
<tr>
<td>Specialized Support Vessel</td>
<td>Various vessels specifically designed to support offshore wind construction and operation, crew lodging and transportation, and/or general port and offshore logistics</td>
<td>• Fall pipe vessel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Offshore support vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Noise mitigation support vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CTVs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SOVs/Walk-to-work vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anchor handling tug and supply (AHTS) vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dredging vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accommodation vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Survey vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Safety vessels</td>
</tr>
</tbody>
</table>
10.1.1 Major Tasks and Specialized Equipment for Deployment and Construction

The steps involved in the construction of New England Wind 1 and New England Wind 2 are broken down below into functional components. In general, the tasks are presented in time sequence of installation, however, tasks overlap, and the actual sequencing and timing of the installation activities are detailed in the schedules presented in Section 9. The necessary specialized vessels and equipment Avangrid intends to use to construct the Projects is presented below.

Avangrid's T&I plan for each of these major components is based on a robust procurement process involving the leading global and domestic suppliers and contractors. The plans employ a variety of contractor-led installation solutions. As described in Section 8, New England Wind 1 is in significantly advanced stages of procurement and has either executed agreements or obtained best and final offers for supply (and, in some cases, installation) of all the major packages listed herein, enabling the development of credible deployment and construction plans that benefit New England Wind 2's plan, as well.

10.1.1.1 Foundations

Task 1. Foundation Transport

Foundation elements will be manufactured in the home factory of the specialty monopile manufacturer selected for each of the Projects.

Task 2. Foundation Installation

Foundation installation requires both specialized vessels and specialized equipment. Some of the largest ships in the world are needed for this activity. The vessels and equipment needed for foundation installation include:
Task 3. Scour Protection

Scour protection is made up of rock, engineered stone, and placed around the foundations of the WTGs. Scour protection is required to prevent loss of seabed sediment from currents around the bases of the WTGs.

In addition to some of the installation equipment required for foundation installation (e.g., safety [guard] vessels and survey equipment), scour protection installation requires the following specialized equipment and technology:
10.1.1.2 ESP Package

An ESP is an offshore substation that is installed in the Offshore Wind Energy Generation site among the WTGs. It collects alternating current power from the inter-array cables that are connected to the WTGs and exports the power to shore through a buried offshore export cable. The ESP is often made far from the offshore wind deployment location. Additional information on the ESP is presented in Section 8.

Task 1. Transport

ESPs are some of the largest and heaviest pieces of equipment associated with an offshore wind project. Specialized vessels must be used to carry the ESP out to the Offshore Wind Energy Generation site. Specialized vessels include:

Task 2. ESP Installation

ESP installation requires all the same specialized equipment and technologies as is used for foundation installation, but also can require:

Task 3. ESP Offshore Commissioning

Testing and offshore commissioning begin after the ESP and related cabling have been connected to the WTGs. ESP commissioning requires a number of highly skilled technicians and specialized electrical equipment. Initial commissioning of the ESP can take many days.
10.1.3 Offshore Export Cable Package

The offshore export cable is installed beneath the seafloor and spans both federal waters on the outer continental shelf and state waters. The offshore export cable is connected to the ESP and carries energy from the ESP to the landfall. The offshore export cable is jointed at the landfall to the onshore export cable that continues to transfer the energy to the onshore substation and then into the grid. Additional information on the export cable concept for the two Projects is presented in Section 8.

Task 1. Cable transport

Offshore export cables require specialized vessels for transport. The vessel typically consists of a barge carrying a cable spool basket, with the cable either spooled on and off the basket or an entire cassette of cable can be lifted on or off a transport vessel using a crane. The vessels needed for cable transport include:

Task 2. Pre-lay surveys and pre-lay grapnel run

Prior to laying the offshore export cable, seabed conditions within the offshore export cable corridor must be surveyed. Pre-lay surveys and grapnel runs are used to characterize the sea bottom and sub-bottom conditions in the path of the offshore export cable. Slight adjustments to the offshore export cable can be made within the surveyed offshore export cable corridor during installation if hazardous conditions for installation are noted on the seabed. The pre-lay grapnel run is performed by a vessel with a grapnel towed on the seafloor along the planned able route. The pre-grapnel run removes any debris prior to the cable installation. The vessels and equipment needed for pre-lay surveys and pre-lay grapnel run include:
Task 3. Cable installation (laying and burial)

Offshore export cable installation is one of the most challenging activities associated with the development of an offshore wind project. The vessels that install these cables are some of the most specialized vessels in the world. The vessels and equipment needed for cable installation include:

Task 4. Cable jointing

Cable joining is a necessary activity for both connecting sections of a cable, and also pulling the cable through the hull of the WTGs and then up the tower into the nacelle. The massive cables that are used in offshore wind projects take a significant amount of skill and care to connect. Cable joining electricians spend years training and apprenticing before making a cable splice.
Task 5. Termination and commissioning works

Termination is conducted when a subsea cable is pulled into the ESP and plugged into a termination plug. The armoring and insulation of the cable must be stripped back so that the cores of the cable can be connected to the termination plug. The cable must be properly spliced and terminated in order for the electrical system to work properly.

10.1.1.4 Inter-Array Cable Package

Similar to the offshore export cable, the inter-array cable connects the individual WTGs to each other and to the central ESP located within the Offshore Wind Energy Generation site. Additional information on the inter-array cable design is presented in Section 8.

Task 1. Cable transport

Cable transport for the inter-array cable is similar to that of the offshore export cable. The inter-array cable will be a smaller diameter cable than the offshore export cable, as described in Section 8. The vessels needed for cable transport include:

Task 2. Pre-lay surveys and pre-lay grapnel run

These operations are very similar to those conducted for the offshore export cable. The pre-lay grapnel run involves a vessel towing a grapnel train over the centerline of the cable route to locate and remove any debris along the cable route that could impact cable installation. The vessels and equipment needed for pre-lay surveys and pre-lay grapnel run include:

Task 3. Cable installation (laying and burial)

Inter-array cable installation is similar to offshore export cable with the exception that the cable runs are typically shorter (length needed only to connect one WTG to another or to the ESP). The vessels and equipment needed for cable installation include:
Task 4. Cable pull-in (into the foundations and ESP)

Additional specialized personnel often operating from separate vessels are required however:

Task 5. Termination and commissioning works

Commissioning of the cabling, ESP, and electrical system and interconnects for an offshore wind project requires significant personnel and equipment. The cables are connected and are fully tested after being pulled into position at the WTGs and the ESP. Testing of the cable and the circuits is conducted prior to energization.

10.1.1.5 WTG Package

The WTG produces the power that is transmitted to the grid, and is comprised of the tower, nacelle, hub, rotor, and blades. At present, many of the separate components that make up a complete WTG are manufactured in different locations and must be shipped to the marshalling and assembly port. Additional information on the planned WTG design is presented in Section 8.

Task 1. WTG transportation to the pre-assembly harbor

Transportation of the WTG components to the marshalling and assembly port involves specialized vessels, cranes, and gear for moving and transport.

Task 2. Harbor logistics and pre-assembly

Harbor logistics represents a complex set of movement patterns for offshore wind components. Individual components are received at the marshalling port, off-loaded, and temporarily staged on-site. The components are stored on the ground or on racks as storage requirements dictate. Components are moved toward the quayside to prepare for off-loading onto the feeder barge or the WTIIV that is being used to transport the components to the install location.
Task 3. WTG T&I at the site

WTG T&I falls under two main categories: The first is the “feeder method” which involves the use of feeder barges in which the WTIV, typically a jack-up vessel, remains offshore at the installation location. Jones Act tugs and barges shuttle components to a foreign flagged vessel. This enables the use of international WTIVs to provide the most cost-efficient and reliable solution due to the limited availability of US-flagged WTIVs capable of installing offshore wind WTGs. The feeder method has been utilized on Avangrid’s Vineyard Wind 1 project and is a tested and proven method for US offshore wind WTG installation.

The second method is the “shuttle method” which involves a WTIV that comes into the marshalling port to pick up a full set of WTG components and then travels to the installation area to install the WTG. In the shuttle method, the installation vessel must be US-flagged and crewed, as required by the Jones Act, as the vessel is delivering goods from one marine facility (the marshalling port) to another marine facility (the previously installed foundation). Currently there is only one available US-flagged Jones Act WTIV anticipated to be available, Blue Ocean Energy Marine’s (a subsidiary of Dominion Energy Inc.) the Charybdis.

The vessels and equipment needed to transport and install the WTG components to the installation site include:
Task 4. WTG commissioning

Similar to the commissioning of the ESP, the commissioning of the WTGs requires special equipment, special vessels, and personnel that are trained in commissioning.

10.1.1.6 Onshore Works Package

For the power from an offshore wind project to be received at the grid, the cables must connect through the landfall site and into a substation that can handle the type and amount of power that is produced. The system that receives the power is a complex set of cables, substations, and electrical interconnect points. Collectively this is known as the Onshore Works Package.

The T&I plan for onshore works is based on a robust procurement process involving multiple contractors with global and US experience, employing a variety of contractor-led installation solutions.

Task 1. Onshore substation construction

The onshore substation is one of the key components of grid interconnection and selling offshore wind energy. The equipment needed to bring the cable onshore at landfall, run it through duct banks, and connect to the grid is listed below:

Task 2. Landfall site construction

The landfall site construction includes nearshore export cable work to bring the cable ashore at the beach crossing through HDD, the transition into the duct banks that house the cable from landfall to the substation, and the connection of the substation to the grid. The HDD drill rig is staged at the beach landing with appropriate site measures such as drill fluid recycler, security fence, and noise mitigation. The rig drills horizontally underground, and installs conduit to the punchout location, where the export cable will be tied in. Divers and barges are used to facilitate the submarine construction such as underwater welding, excavated spoil disposal, and underwater trenching. Once the conduit is completely installed, the punchout will be stabilized in preparation for the future export cable installation. At the landfall site, transition joint bay vaults are installed where the offshore export cable can be spliced to the onshore export cable. Cable installation nearshore is challenging because the cable lay vessel cannot operate in shallow waters. The cable is transferred to a smaller vessel for
landfall construction. From the transition vault, the cable is installed in the duct bank and pulled through to the onshore substation for grid interconnection.

Task 3. Duct bank installation

The duct bank is the conduit through which the export cable comes ashore and connects into the grid. The duct bank consists of underground concrete-encased polyvinyl chloride conduits with thermal fill placed on top. The entire process of cable installation from the WTGs to grid interconnection represents a series of complicated steps that must align in order for the power to be delivered to the grid.

Task 4. Onshore export cable installation

The cables will be delivered to the site in reels. The conduits will be proofed to ensure they are clear of debris and obstructions. Using the splice vaults, the cable installer will use a winch system to pull the cables throughout the duct bank system. The cables will be cut to the required lengths and spliced. This process will be performed throughout the route until the cable system is completely installed. Terminations will be installed, and the cable system will be tested for compliance.

10.2 Site Control

Please provide documentation to demonstrate site control for all marine terminals and other waterfront facilities that will be used to stage, assemble, and deploy the project for each stage of construction.

a. Evidence that the bidder or the equipment/service provider have a valid lease, or option to lease, a marine terminal and/or waterfront facility for construction of the offshore wind energy project (e.g., by virtue of ownership or land development rights obtained from the owner).

b. If not available, describe the status of acquisition of real property rights for necessary marine terminal and/or waterfront facilities, any options in place for the exercise of these rights and describe the plan for securing the necessary real property rights, including the proposed timeline. Include these plans and the timeline in the overall project schedule. Provide any agreements, options, or other materials reflecting the bidder’s efforts so far to secure real property rights (and any letters of intent to the extent signed agreements are not in place).

c. Identify any joint use of existing or proposed real property rights for marine terminal or waterfront facilities.
A critical challenge in the US offshore wind industry is the insufficiency of port infrastructure capable of hosting offshore wind construction staging activities. This challenge will be exacerbated by the anticipated rapid growth of the industry over the coming decade, particularly as multiple projects move into their construction phase with overlapping time horizons. Avangrid is committed to expand and anchor US and Massachusetts-based port facility infrastructure for the major construction and operations scopes of both Projects. Avangrid will serve as the anchor tenant for the Salem Offshore Wind Terminal, utilizing the facility for pre-assembly, staging, and load-out of the WTGs in order to maximize the economic benefits from the Projects to the Commonwealth. Avangrid’s evaluation of potential port facilities has been heavily informed by MassCEC’s Massachusetts Offshore Wind Ports and Infrastructure Assessments.

As detailed in this section, Avangrid has secured site control for all critical US-based marine terminals and other waterfront facilities that will be used to stage, assemble, and deploy the Projects for each stage of construction, including the Salem Offshore Wind Terminal for WTG marshalling. In all cases, Avangrid has developed relationships with the facilities identified herein, and discussions and documentation have been acquired to support this submission.

10.2.1 Salem Offshore Wind Terminal - Marshalling Harbor for WTGs, Salem

In February 2023, Avangrid and Crowley (through their wholly owned subsidiary, Salem Wind Terminal LLC) executed a lease agreement securing Avangrid tenancy at the Salem Offshore Wind Terminal for the term needed for it to build New England Wind 1 and New England Wind 2. A Notice of Lease is provided as Attachment 10.2-1.

Since obtaining the facility, Crowley has engaged AECOM, a large international provider of infrastructure design, to design and manage a robust team of subconsultants and engineering professionals supporting Crowley’s redevelopment of the port facility. TetraTech, a large national provider of permitting and scientific services, is leading the drive to bring the associated permitting processes to conclusion, on behalf of Crowley. The site is being redeveloped to provide the quayside, load bearing capacity, and berthing infrastructure necessary to accommodate the large vessels and components necessary for offshore wind project construction. An important element of these infrastructure improvements is the installation of a second berth at the facility to accommodate incoming vessels carrying large offshore wind components. The existing berth will be hardened to facilitate the out-loading and trans-loading of the components onto barges and WTIVs that will ferry the components to their installation site offshore. Through their Community Benefits Agreement with the City of Salem, Crowley has committed nearly $9 million in direct assistance to the community as well as other non-financial benefits, including a commitment to incorporate electrification and shore power technologies as they become technologically feasible, with a goal of achieving 100% port electrification by 2040. This port exemplifies the additional, specialized infrastructure needed to support the region’s current and future ambitious offshore energy goals.
At the time of this proposal's submission, Crowley, AECOM, and TetraTech have advanced the redevelopment project to the construction phase, having acquired nearly all permits, completed all design plans, and awarded the associated civil works contracts. MassCEC has acquired an ownership stake in the Salem Offshore Wind Terminal. As described in **Section 13**, this process has been facilitated by New England Wind 1's anchor tenancy, providing the financial commitment necessary to initiate development of the port facility. A rendering of the Salem Offshore Wind Terminal is depicted in **Figure 10.2-1**.

Figure 10.2-1 Rendering of Salem Offshore Wind Terminal
10.2.5 Additional Backup and Optional Facilities

Complex offshore wind projects involve a number of assets and facilities in the construction and operation processes. The incorporation of backup and optional facilities into the Projects stems from Avangrid/Iberdrola’s experience installing and operating offshore wind projects across the globe, and from the experience of Vineyard Wind 1. The purpose of a backup or optional facility is to reduce the risk of delays and or operational inefficiencies if parameters change during the course of the Projects, or if logistical challenges such as weather, traffic, shipping constraints, or unforeseen equipment
issues create challenges for the project flow. A summary of critical marine terminals and waterfront facilities, which may be used during the construction period, is provided in Table 10.2-1.

Table 10.2-1 Backup and Optional Port Facilities

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.2.6 Joint Use

For the primary construction support facilities for New England Wind 1 and New England Wind 2, Avangrid is not planning for any joint use of the marine terminal or waterfront facilities. While joint use
may be necessary at support facilities, Avangrid has secured priority rights for vessel berthing and facility use, as described below:

- **Salem Offshore Wind Terminal:** The Lease Agreement that Avangrid has negotiated with Crowley for the Salem Offshore Wind Terminal in Salem Harbor includes Avangrid’s: (1) exclusive use of all buildings and other improvements located on the site; (2) exclusive or priority use of all quays, wharves, and berths on terms to facilitate Avangrid’s intended uses; and (3) non-exclusive use of the navigable access channel.

10.3 Staging and Deployment

Please describe the proposed approach for staging and deployment of major project components to the project site. Indicate the number, type and size of vessels that will be used, and their respective roles, as well as the projected timing of their use. Please include specific information on how the bidder’s deployment strategy will conform to requirements of the Merchant Marine Act of 1920 (the Jones Act).

Avangrid’s proposed approach for staging and deployment leverages the knowledge and expertise gained from the unique experience of constructing Vineyard Wind 1, the first large-scale offshore wind project to have commenced offshore and onshore construction in the nation, let alone the region. In addition, the approach is based on extensive research and supply chain engagement.

Avangrid has been developing and analyzing potential concepts to secure cost-effective and reliable logistics, ports, and vessel solutions for its projects since 2016. During this time, Avangrid has engaged extensively with the most qualified US and European-based installation contractors. Securing access to appropriate vessels and identifying logistical solutions are essential steps to ensure successful adherence to the offshore construction schedules, as detailed in Section 9.

With the experience of constructing Vineyard Wind 1 and over six years developing and analyzing potential concepts for cost-effective and reliable logistics, ports, and vessel solutions in New England, the project team has significant experience dealing with and overcoming challenges such as Jones Act restrictions, low harbor access clearances, space limitations at ports, and supply chain availability constraints – especially with respect to offshore wind vessels and logistics – and has taken special care to explore all possible staging and deployment approaches prior to proposing this strategy. Avangrid has also been able to draw from experience from the global affiliates of the Iberdrola Group.
To validate the construction and logistics plan for both Projects, Avangrid has engaged in direct dialogue with numerous potential contractors and suppliers (see Section 10.4). An overview of expected vessels to be used during the staging and deployment for each offshore package, including the type, example vessel class, and size, is provided in Table 10.3-1. The list is indicative and non-exhaustive.

Table 10.3-1 Vessel Types and Sizes

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th>Vessel Examples</th>
<th>Width (feet)</th>
<th>Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable laying vessel</td>
<td></td>
<td>90-110</td>
<td>400-500</td>
</tr>
<tr>
<td>Fall pipe vessel / Cable protection placement vessel</td>
<td></td>
<td>100-150</td>
<td>430-560</td>
</tr>
<tr>
<td>HTV</td>
<td></td>
<td>80 – 185</td>
<td>390 – 740</td>
</tr>
<tr>
<td>HTV (TPs)</td>
<td></td>
<td>100 – 150</td>
<td>395 – 650</td>
</tr>
<tr>
<td>HTV (WTGs)</td>
<td></td>
<td>65 – 100</td>
<td>395 – 560</td>
</tr>
<tr>
<td>HLV</td>
<td></td>
<td>155 – 460</td>
<td>591 – 757</td>
</tr>
<tr>
<td>Vessel Type</td>
<td>Vessel Examples</td>
<td>Width (feet)</td>
<td>Length (feet)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>WTIV</td>
<td></td>
<td>128-164</td>
<td>433-495</td>
</tr>
<tr>
<td>Feeder vessel</td>
<td></td>
<td>75-150</td>
<td>130-200</td>
</tr>
<tr>
<td>Barge (including cable transport and laying barges)</td>
<td></td>
<td>80-145</td>
<td>300-500</td>
</tr>
<tr>
<td>Tug (including “site assistance tugs”)</td>
<td></td>
<td>30-45</td>
<td>80-160</td>
</tr>
<tr>
<td>DP support vessel/AHTS vessel</td>
<td></td>
<td>40-70</td>
<td>200-260</td>
</tr>
<tr>
<td>Support vessel/walk-to-work vessel</td>
<td></td>
<td>25-65</td>
<td>115-445</td>
</tr>
<tr>
<td>CTV</td>
<td></td>
<td>25-40</td>
<td>80-110</td>
</tr>
</tbody>
</table>
The following subsections summarize the six main work packages for New England Wind 1 and New England Wind 2 and the approach Avangrid intends to take to complete the staging and deployment of the major components.

10.3.1 Foundations – Monopiles, TPs and Scour Protection

Vineyard Wind 1 is also using monopile foundations topped with TPs and completed multiple rounds of comprehensive competitive procurements for the Vineyard Wind 1 monopile foundations before finalizing contracts for the fabrication, transportation, and offshore installation logistics, which helped inform the construction and logistics plan for those scopes. Members of Avangrid’s team also have experience with the installation of WTGs on jacket foundations for the East Anglia ONE offshore wind project located in the UK and the Wikinger offshore wind project location in Germany.
Foundation deployment consists of the following major tasks:

- Monopile fabrication;
- Monopile transportation;
- Monopile installation;
- TP transportation;
- TP installation; and
- Scour protection T&I.

Vessel types used, expected number of vessels, and respective roles are summarized in Table 10.3-2 below.

Table 10.3-2 Foundation Vessels: Monopile, TP, and Scour Protection

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th># of Vessels</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall pipe vessel</td>
<td></td>
<td>Scour protection installation</td>
</tr>
<tr>
<td>HTV</td>
<td></td>
<td>Foundation transport</td>
</tr>
<tr>
<td>HLV</td>
<td></td>
<td>Foundation installation</td>
</tr>
<tr>
<td>Barge</td>
<td></td>
<td>Foundation transport to Offshore Wind Energy Generation site</td>
</tr>
<tr>
<td>Tug</td>
<td></td>
<td>Foundation transport to Offshore Wind Energy Generation site</td>
</tr>
<tr>
<td>DP support vessel/AHTS vessel equivalent</td>
<td></td>
<td>Noise mitigation deployment, barge positioning, secondary work</td>
</tr>
<tr>
<td>Support vessels</td>
<td></td>
<td>Noise mitigation deployment, passive acoustic monitoring, protected species observation, sound field verification</td>
</tr>
<tr>
<td>CTV</td>
<td></td>
<td>Crew transfer</td>
</tr>
<tr>
<td>Safety vessel</td>
<td></td>
<td>Guard the installation works</td>
</tr>
</tbody>
</table>
10.3.1.1 Foundation Transportation

Monopile Transport

TP Transport
Table 10.3-3 Foundation and Harbor Logistics Steps

<table>
<thead>
<tr>
<th>Foundation Transport and Harbor Logistics Steps</th>
<th>Monopile and TP Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopile transportation</td>
<td></td>
</tr>
<tr>
<td>TP transportation</td>
<td></td>
</tr>
</tbody>
</table>
Table 10.3-3 Foundation and Harbor Logistics Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Setup site</td>
</tr>
<tr>
<td>1.1</td>
<td>Prepare base</td>
</tr>
<tr>
<td>1.2</td>
<td>Install foundation</td>
</tr>
<tr>
<td>1.3</td>
<td>Install harbor equipment</td>
</tr>
<tr>
<td>1.4</td>
<td>Perform tests</td>
</tr>
</tbody>
</table>

10.3.1.2 Foundation Installation

- Step 1: Excavation
- Step 2: Concrete Pouring
- Step 3: Setting Foundation Elements
- Step 4: Inspection and Certification
<table>
<thead>
<tr>
<th>Foundation Installation Steps</th>
<th>Monopile and TP Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopile Installation using an HLV</td>
<td></td>
</tr>
<tr>
<td>Post Pile Installation Activities</td>
<td></td>
</tr>
<tr>
<td>TP installation using an HLV</td>
<td></td>
</tr>
</tbody>
</table>
10.3.1.3 Scour Protection T&I

The benefit of scour protection is that foundation penetration can be minimized. The need for scour protection is specific to the final design of the foundation concept(s) selected and will be further assessed upon further engineering of the foundations. Scour protection may be installed up to several months prior to the start of foundation installation and/or after foundation installation following the multi-step process outlined in Table 10.3-5. The steps shown in Table 10.3-5 describe the installation of rock
material, which is the most widely used scour protection material in the offshore wind industry.

Table 10.3-5 Scour Protection T&I

Several techniques exist for placing scour protection at the base of foundations, including side dumping and placement with a crane/bucket or fall pipes. The fall pipe method uses a pipe extending from a vessel to the seafloor near the foundation location; it is the most precise technique and is expected to be used wherever possible. Scour protection installation vessels will likely operate in DP mode and will move along a pre-determined pattern to minimize usage of the scour protection material and ensure even distribution of the rock material.

10.3.2 ESP

The ESP consists of two primary components: (1) the topside, which houses the electrical components; and (2) the foundation substructure. As described in Section 8, Avangrid has selected ESP topsides that will be installed on piled jackets. This is a conventional offshore substation design that has been utilized in the offshore wind industry globally. The deployment of the ESP will mainly consist of the following tasks:

- ESP T&I;
- ESP offshore commissioning; and
- Energizing and system commissioning.

Vessel types used, expected number of vessels, and respective roles are summarized in the Table 10.3-6 below.
Table 10.3-6 ESP Vessels

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th># of Vessels</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLV</td>
<td>1</td>
<td>ESP installation</td>
</tr>
<tr>
<td>HTV</td>
<td>1</td>
<td>ESP transport</td>
</tr>
<tr>
<td>Tugs</td>
<td>1</td>
<td>ESP transport</td>
</tr>
<tr>
<td>CTV</td>
<td>1</td>
<td>Crew transfer</td>
</tr>
<tr>
<td>Hotel vessel</td>
<td>1</td>
<td>Crew accommodations during commissioning</td>
</tr>
</tbody>
</table>

10.3.2.1 ESP T&I

Each ESP topside will be delivered directly to the installation site on an HTV, or an installation vessel, and lifted into place with an HLV. The specific steps required to transport and install the ESP foundation are similar to those described above for WTG foundations in Tables 10.3-4 and 10.3-5. Scour protection will be installed as the design requires during the same campaign as the scour protection for the WTG foundations (see Table 10.3-6).
After each ESP is installed, the inter-array cables and offshore export cables will be pulled into the ESP. These cables will be routed through J-tubes located on the foundation. Once the cables are connected to the ESP, the corrosion protection/control system is expected to be installed around the foundation.

10.3.2.2 ESP Offshore Commissioning

Onshore commissioning of each ESP occurs as part of the final manufacturing process for the topside and is conducted at the factory prior to ESP T&I. After the ESP is installed, offshore commissioning will commence. ESP offshore commissioning includes tests of the electrical infrastructure and safety systems prior to commercial operations, which can last several months. During the commissioning period, a vessel may be positioned adjacent to the ESP to provide accommodations for workers performing commissioning activities.
10.3.3 Offshore Export Cables

Offshore export cable installation consists of the following steps:

- Route clearance (e.g., boulder relocation), pre-lay grapnel run, and pre-lay surveys;
- Cable transportation, installation, and jointing of cable sections and terminations at connection nodes on the ESP;
- Landfall site cable equipment installation, including, cable pull-in winches, excavation for trenching, cable accessories, inspection and maintenance manholes, and armoring; and
- Cable termination and commissioning works at both the landfall site transition vault and ESP.

Vessel types used, expected number of vessels, and respective roles are summarized in Table 10.3-9 below.
Table 10.3-9 Offshore Export Cable Vessels

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th># of Vessels</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge</td>
<td></td>
<td>Offshore export cable transportation and/or installation in shallow water areas</td>
</tr>
<tr>
<td>Support vessel</td>
<td></td>
<td>Pre-lay surveys and pre-lay grapnel run, burial support, and boulder clearance</td>
</tr>
<tr>
<td>Cable laying vessel</td>
<td></td>
<td>Laying of the cables (and likely burial)</td>
</tr>
<tr>
<td>Support vessel</td>
<td></td>
<td>Burial support vessel, boulder clearance</td>
</tr>
<tr>
<td>AHTS vessel</td>
<td></td>
<td>Support main vessel with anchor handling</td>
</tr>
<tr>
<td>CTV</td>
<td></td>
<td>Crew transfer for termination and commissioning</td>
</tr>
<tr>
<td>Safety vessel</td>
<td></td>
<td>Guard the installation works</td>
</tr>
<tr>
<td>Cable protection placement vessel</td>
<td></td>
<td>Place cable protection (if needed)</td>
</tr>
</tbody>
</table>

10.3.3.1 Route Clearance, Pre-Lay Grapnel Run, and Pre-Lay Surveys

Extensive surveys, geotechnical borings, and digital ground models were completed by Avangrid and its contractors to gather information and data on the seabed surface and subsurface within the cable corridors.

The subsurface along the cable route is well known and significant quantities of boulders are not expected to be encountered. Large obstructions (large boulders and anthropogenic debris) are generally not expected along the cable route. If small fields or individual boulders are encountered, the first means of mitigation would be avoidance. If boulders cannot be avoided, they will be relocated out of the cable route. This procedure is expected to be accomplished either by means of a grab tool suspended from a vessel’s crane, or by using a plow-like tool that is towed along the route to push boulders aside (this may occur during the cable installation process).

In the unlikely event large boulders are encountered, local cable route segments will be slightly relocated and/or realigned (within the permitted cable corridor) prior to cable installation.

The planned cable alignments will be prepared with a pre-lay grapnel run. The pre-lay grapnel run involves a vessel towing a grapnel train to find and recover debris crossing the cable route. This will
be performed along the route in advance of the cable deployment to minimize the risk of any debris on the seabed hindering installation or the achievement of target burial depth. A pre-lay survey using a full suite of geophysical and remote sensing equipment will be carried out shortly before installation to confirm that the cable route is free of obstructions and verify seabed conditions.4

10.3.3.2 Cable Transportation, Installation, and Jointing

To install each cable, the cable laying vessel will move along the cable alignment while simultaneously laying and burying the cable. Installation can begin from shore and move towards the Offshore Wind Energy Generation site, but the final installation sequencing for cable burial will be determined during the detailed engineering phase.

The offshore export cables will have a target burial depth of 5-8 feet below the seafloor, which Avangrid engineers have determined is more than twice the burial depth required to protect the cables from fishing activities; it also provides a 1 in 100,000-year probability of anchor strike, which is considered a negligible risk. Several possible techniques may be used during cable installation to achieve the target burial depth. Based on currently available technologies, the majority of the offshore export cables are expected to be installed using jetting techniques (e.g., jet plow or jet trenching) or mechanical plow. Additional specialty techniques, such as mechanical trenching or precision installation by diver or ROV, may be used to maximize the likelihood of achieving sufficient burial depth in areas of coarse or consolidated sediment, rocky bottom, or other difficult conditions. While the actual offshore export cable installation method(s) will be determined by the cable installer based on site-specific conditions, Avangrid will prioritize the least environmentally impactful installation practicable for each segment of cable installation.

During installation, the burial tool will grade-out near jointing locations and at the ESP. Where the offshore export cables approach the ESP foundation, the cables will likely be protected by a cable entry protection system intended to reduce fatigue and mechanical loads as they transition above the seabed and into the foundation.

4 The Environmental Mitigation Plan, included as Attachment 7.5-1, discusses measures that Avangrid would adopt to minimize potential environmental impacts associated with these and other construction and installation activities.
10.3.3.3 Landfall Site Installation

For each Project, HDD will be employed at the landfall site to bury the offshore export cables underground, which will avoid or minimize disturbance to the beach and surrounding area. HDD is a trenchless method of installing a conduit in an arc along a prescribed bore path by using a surface-launched drilling rig. It was similarly employed at the Vineyard Wind I landfall site. Once the conduit is inserted into the bore hole, the cable is pulled through it in a process known as “pull-in.” One conduit is needed for each offshore export cable.

The cable laying vessel offshore from the landfall site will position close to the HDD exit and deploy the burial tool. The onshore winch wire will be pulled through the conduit to the cable laying vessel. There, the wire will be connected to the offshore export cable's end and the export cable will be pulled through the conduit towards shore. Buoys will be installed (if required) on the cable prior to the offshore export cable section leaving the chute of the vessel, enabling the cable to be floated during the pull-in process towards the HDD offshore outlet. Once in position, the buoys will be removed, and the offshore export cable end will be guided through the HDD tool. The cable pull-in continues until the export cable end arrives at the transition vault at the landfall site.

When the shore pull-in is complete, the cable laying vessel will commence burying the cable as it moves towards deeper water. The HDD cable conduit end will then be closed and buried. This process is then repeated for each HDD conduit required. The additional HDD conduit(s) would be completed in quick succession utilizing the same equipment as the first conduit.

10.3.3.4 Cable Pull-In into the ESP

Cable-pulling into the ESP is a critical step in the completion of the Projects. The operation must be conducted with the highest health and safety standards and implement all industry certified technical requirements. As the cable laying vessel approaches the ESP, it will stop at a calculated distance and the cable will be cut and sealed. An ROV will then be lowered to the seabed to recover a pre-installed messenger wire from the base of the foundation and connect it to the pull-in head of the cable. Using the messenger wire, a winch on the ESP will then begin to pull the cable up through the foundation into the ESP topside. As pull-in progresses, the cable laying vessel will move towards the ESP and the cable will be lowered to the seabed. The pull-in continues from the ESP-mounted winch until the cable reaches the hang-off point where a dedicated team will install the temporary hang-off.

10.3.3.5 Cable Termination and Commissioning

The termination team will strip the cables to expose the power cores and the fiber optics after the offshore export cable is secured on the temporary hang-off in the ESP; the permanent hang-off will
then be installed. The power cores will be routed inside the ESP and terminated in the high voltage gas-insulated switchgear bay. The fiber optic cables will be connected into the fiber optic patch box. Ground wires will be connected to the dedicated ground points. Once termination is completed, the export cables will be fully tested and commissioned to confirm they can be energized safely.

10.3.4 Inter-Array Cables

The inter-array cables for the Projects will connect the individual WTGs to one another and to the ESP. Inter-array cable installation will be performed prior to WTG installation to facilitate the rapid testing and commissioning of WTGs once they are installed, so first power can be delivered from the WTGs on a rolling basis as each set of WTGs on the inter-array cable strings come online prior to COD.

Inter-array cable installation consists of the following steps:

• Pre-lay surveys and pre-lay grapnel run;
• Cable transportation and seabed installation utilizing a cable lay ship;
• Cable pull-in into the WTG foundations and into the offshore ESP; and
• Cable termination and commissioning at both ends of each array cable segment.

Vessel types used, expected number of vessels, and respective roles are summarized in Table 10.3-10 below.

Table 10.3-10 Inter-Array Cable Vessels

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th># of Vessels</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge/Cargo Vessel</td>
<td></td>
<td>Inter-array cable transportation</td>
</tr>
<tr>
<td>Support vessel</td>
<td></td>
<td>Pre-lay surveys and pre-lay grapnel run</td>
</tr>
<tr>
<td>Cable laying vessel</td>
<td></td>
<td>Laying of the cables (and potentially burial)</td>
</tr>
<tr>
<td>Support vessel</td>
<td></td>
<td>Burial support vessel</td>
</tr>
<tr>
<td>CTV</td>
<td></td>
<td>Crew transfer for termination and commissioning</td>
</tr>
<tr>
<td>SOV/Walk-to-work vessel</td>
<td></td>
<td>Crew transfer for termination and commissioning</td>
</tr>
</tbody>
</table>
Table 10.3-10 Inter-Array Cable Vessels

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th># of Vessels</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety vessel</td>
<td></td>
<td>Guard the installation works</td>
</tr>
<tr>
<td>Fall pipe vessel/Cable protection</td>
<td></td>
<td>Place cable stabilization (if required)</td>
</tr>
<tr>
<td>stabilization vessel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.3.4.1 Pre-Lay Surveys and Pre-Lay Grapnel Run

A pre-lay detailed remote sensing and ROV (as necessary) survey will be carried out shortly before cable installation to confirm that the cable alignments are free of obstructions, and to verify seabed conditions.

10.3.4.2 Cable T&I

Upon arrival at the Offshore Wind Energy Generation site, the first end of an inter-array cable will be pulled into the WTG or ESP foundation using winches installed on the foundation. With the required cable length pulled-in, the cable laying vessel will move in the direction of the next foundation, surface-laying the cable along the planned route. The departure angle of the cable will be constantly monitored along with the laid cable length as it leaves the vessel. These measures ensure the cable is not laid with too much tension and help ensure that the cable’s maximum bending radius is not compromised. As the installation vessel approaches the next foundation, the remaining length required to carry out the second-end pull-in will be calculated, and the cable will be cut.

Cable burial operations (referred to as “post-lay burial”) will then be performed by the cable laying vessel or a separate dedicated vessel.

10.3.4.3 Cable Pull-In into the Foundations and ESP

Messenger wires will be used to pull the inter-array cables into the foundations. These wires can be pre-installed in foundations onshore or installed offshore, depending on the final strategy and foundation type. If monopiles are utilized, messenger wires would likely be installed directly offshore. Before the inter-array cables are pulled in, the preparation teams will install the pull-in rigging equipment and winch on the ESP and WTG foundations.

Messenger wires will be recovered by the cable laying vessel using an ROV. Once on board, they will be connected to the cable pull-in head. After connection of the messenger wire to the cable rigging,
the preparation team will increase tension on the wire using the winch and the cable laying vessel will simultaneously pay out cable. The pull-in will continue until the cable is in the right position in the foundation, where it will be secured at the temporary hang-off point. Cables will likely be installed with a cable entry protection system to ensure integrity. Additional protection may be placed over the cable entry protection system to secure it in place and limit movement of the cable. An ROV will carry out a final visual inspection of the cable entry protection system and cable to ensure that there are no issues with scour protection surrounding the foundation.

10.3.4.4 Cable Termination and Commissioning
After the inter-array cable is secured on the temporary hang-off, the termination team will strip the cables to expose the power cores and fiber optics. Once termination is completed, the inter-array cables will be fully tested and commissioned to confirm they can be energized safely.

10.3.5 WTGs

As detailed in Section 12, Avangrid’s team benefits from extensive experience with successful offshore wind project construction and WTG installation, from affiliate projects installed globally using a variety of original equipment manufacturers to staging and installing the WTGs used for Vineyard Wind 1, which is sited immediately next to the Offshore Wind Energy Generation site and shares many identical or similar characteristics.

Various installation solutions for WTGs are available in the US and have been tested in the market with suppliers. The logistical approach chosen for the Projects will transport WTG components from the fabrication facilities to a pre-assembly harbor (also referred to as a WTG staging port) at the Salem Offshore Wind Terminal (see Section 10.2). From there, the WTGs will be transported offshore for installation using the feeder method described in Section 10.1. Alternatively, if a US-flagged WTIV is utilized, the WTG components could be transported using the shuttle method described in Section 10.1.

Vessel types used, expected number of vessels, and respective roles are summarized in Table 10.3-11 below.

<table>
<thead>
<tr>
<th>Vessel Type</th>
<th># of Vessels</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTVs</td>
<td></td>
<td>Nacelles, tower sections, and blades transport</td>
</tr>
<tr>
<td>Vessel Type</td>
<td># of Vessels</td>
<td>Role</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Feeder vessels</td>
<td></td>
<td>Feeding WTG components from harbor to the Offshore Wind Energy Generation site</td>
</tr>
<tr>
<td>WTIV</td>
<td></td>
<td>WTG installation</td>
</tr>
<tr>
<td>CTV</td>
<td></td>
<td>Crew transfer for WTG installation and commissioning</td>
</tr>
<tr>
<td>Safety vessels</td>
<td></td>
<td>Guard the installation works</td>
</tr>
<tr>
<td>Hotel vessel</td>
<td></td>
<td>Crew accommodations during commissioning</td>
</tr>
</tbody>
</table>

WTG staging and deployment consists of the following major tasks:

- WTG transportation to the pre-assembly harbor;
- Harbor logistics and pre-assembly;
- WTG T&I at the Offshore Wind Energy Generation site; and
- WTG commissioning.

10.3.5.1 WTG Transportation to the Pre-Assembly Harbor

The WTG consists of three major components: the tower sections, the nacelle, and the blades. Each component will be prepared at a fabrication facility and shipped to the pre-assembly harbor. Avangrid will use the Salem Offshore Wind Terminal in Massachusetts for the pre-assembly, staging, and load-out of WTGs. A lease agreement with Crowley at the Salem Offshore Wind Terminal has been executed with the intention of supporting these activities (see Section 10.2).

A sufficient stock of components will be accumulated at the pre-assembly harbor prior to WTG installation so that a steady pace of installation activities can be maintained. WTG components may be transported from their manufacturing sites to the pre-assembly harbor on multi-purpose HTVs or transport barges. These vessels are readily available in the market and various suppliers are already engaged with Avangrid on other projects.

The development of case-specific transport and storage plans will ensure the best possible utilization of these vessels; a vessel may carry a mix of components or may be dedicated to one component type (i.e., blades only or towers only). Multiple transport vessels will likely be involved simultaneously in WTG transportation to the pre-assembly harbor. WTG transport will proceed according to the steps outlined in Table 10.3-12.
10.3.5.2 Harbor Logistics and Pre-Assembly

The main activities at the pre-assembly harbor will include shifting WTG components between transport vessels, lay-down storage and feeder or WTIVs for transport offshore. Once the nacelles, blades, and tower sections arrive in Salem, the handling steps listed in Table 10.3-13 will occur. Mobile harbor cranes can be used for inbound logistics if no crane capability is available on the HTVs; crawler cranes or a fixed location ringer crane can be used to support the lifting of WTG components onto feeder vessels.

Table 10.3-13 WTG Pre-Assembly Harbor Logistics

<table>
<thead>
<tr>
<th>WTG Pre-Assembly Harbor Logistics Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staging of Nacelles and Tower sections</td>
</tr>
</tbody>
</table>
Preparatory efforts will be implemented before the WTG components are transported offshore for installation. This primarily relates to the upending and stacking of tower sections, as well as the maintenance and pre-assembly of internal components. Final preparation and tests will also be performed on the nacelle to ensure the fastest possible offshore commissioning.

10.3.5.3 WTG T&I at Offshore Wind Energy Generation Site

When ready for final assembly, each WTG component will be loaded onto a feeder vessel at the pre-assembly harbor and brought offshore. WTG components will be loaded by cranes located at the quayside onto feeder vessels, or by the main WTIV onto its own deck.

For the feeder method, WTG feeder vessels will employ a tug-barge-tug or tug-barge arrangement, which consists of a regular deck cargo barge assisted by a capable main towing tug from the bow and an offshore assist tug from the stern or custom-made barge and tug configuration that will allow a newly developed docking process offshore. The tug-barge-tug arrangement has been demonstrated successfully by the recent offshore delivery of WTG components for Vineyard Wind 1. The operation is achieved using a main towing tug, equipped with nozzled propellers, triple rudders, and bow thrusters; the main tug will be connected to the deck cargo barge on a short tow line and bridle connection. The offshore assist tug, equipped with fully rotatable propulsion thrusters, will be connected to the stern of the deck cargo barge centerline by redundant synthetic push lines. The two tug types will provide high maneuverability and capability to control the cargo barge, providing safe offshore lifting operations from the deck cargo barge. Such tugboats and deck cargo barges are commonly utilized in the US and represent an opportunity for direct engagement with US-flagged vessels and the local businesses that support them.
WTG installation will occur continuously until all WTGs are installed onto their respective foundations. The Projects are both expected to utilize either a American-made WTIV, such as the U.S-built Charybdis, a foreign-flagged WTIV. At the time of this submission, only one US-flagged WTIV is under construction in Texas; planning is underway to build additional vessels, but it is unlikely that others will be ready to mobilize in the near future. If a foreign-flagged jack-up vessel scenario is needed, it would remain at the Offshore Wind Energy Generation site while feeder vessels transport a steady stream of WTG components for installation. The WTG installation process (assuming the use of a feeder concept) is further described in Table 10.3-14.

Table 10.3-14 WTG Transport to Site and Installation

<table>
<thead>
<tr>
<th>WTG T&I Steps</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder vessels cycle</td>
<td></td>
</tr>
<tr>
<td>WTIV cycle</td>
<td></td>
</tr>
</tbody>
</table>

Should a US-flagged WTIV be contracted either of the two Projects, the WTIV would shuttle between the marshalling port and the Offshore Wind Energy Generation site, picking up components in port and installing them at their designated offshore position. Specialized quayside load-out equipment is
required and load-out activities under such an arrangement would likely be accomplished using a mixture of ship-side and land-side cranes.

10.3.5.4 WTG Commissioning

WTG installation will be followed by commissioning, where the WTGs are prepared for operation, and become energized. Commissioning involves the completion of tests to electrical infrastructure and the WTG before a formal transfer of responsibilities to the operations and maintenance teams is made. The WTG commissioning phase will overlap with the WTG installation phase, with individual WTGs being commissioned shortly after their erection.

10.3.6 Onshore Works

Onshore works consist of the following major tasks:

- Onshore substation construction;
- Landfall site construction;
- Duct bank installation; and
- Cable transport, installation, and commissioning.

10.3.6.1 Onshore Substation Construction

For each Project, Avangrid will construct an onshore substation where the onshore export cable voltage will be increased before interconnection to the New England grid at the West Barnstable substation. The onshore substation’s electrical design will be comparable to that of most other onshore substations built to support offshore wind energy generation (see Section 8). There are many experienced contractors in New England and throughout the US with the expertise to build this type of onshore substation; Vineyard Wind 1 has recently completed the construction of its onshore substation. Lessons learned from the Vineyard Wind 1 project have further informed Avangrid preparations.

Construction of the onshore substation will be completed in four primary phases: (1) site preparation; (2) assembly of foundations and primary structures; (3) equipment installation; and (4) site restoration. Site preparation involves installation of a security fence and gates, placement of erosion controls, clearing and grading of the substation site, and excavation work. The assembly phase involves constructing the foundations and structural facilities. Phase three involves the installation, erection, testing, and commissioning of electrical equipment. Site restoration includes cleanup, landscaping, and site stabilization. Construction of the onshore substation is planned to occur in parallel with the onshore duct bank and cable installation campaign.

10.3.6.2 Landfall Site Construction

The offshore export cables for New England Wind 1 and proposed offshore export cables for New England Wind 2 will make landfall in the Town of Barnstable, MA (see Section 6). At the landfall site, the transition of the offshore export cables to land will be accomplished using HDD to avoid or minimize impacts to the beach, intertidal zone, and nearshore areas. HDD functions will achieve a burial significantly deeper than any expected erosion. The offshore and onshore export cables will be joined together in transition vaults located below-grade at the landfall site. The construction of the
transition vaults and entry pit for cable pull-in will constitute the majority of onshore works at the landfall site.

Horizontal Directional Drilling

HDD operations at the landfall site will include a land-based drill rig system, drilling fluid recirculation systems, residuals management systems, and associated support equipment. Drilling will begin with bore holes between the onshore HDD staging area and an offshore exit point. At the staging area, the drill rig will be set up behind the entry pit, providing the contractor with access to a proper drilling trajectory and serving as a reservoir for drilling fluids (i.e., a slurry consisting predominantly of water and bentonite, a naturally occurring, non-toxic clay). When the drill bit advances to the exit point, it will be replaced with a series of reamers that widen the bore hole. Once the desired bore hole diameter is achieved, a pulling head will be placed on the end of the drill pipe to pull a section of plastic (e.g., high-density polyethylene) conduit into the bore hole. The cables are then subsequently pulled into the plastic conduit. Thermal grout may be used to fill spaces between the offshore export cable and the conduit to enhance the thermal characteristics of the cable (i.e., heat dissipation). This process is repeated for each conduit required; there will be one conduit for each offshore export cable.

10.3.6.3 Duct Bank Installation

The onshore export cables for each Project are expected to be installed in an underground duct bank along selected onshore cable routes. Associated duct bank will primarily be placed within existing public roadway layouts (either beneath the road or within the shoulder); portions of the duct bank may extend into existing utility rights-of-way (ROWs). Section 6 provides more detail on the onshore export cable routes.

The duct bank will likely consist of plastic pipes or sleeves encased in concrete; each onshore export cable and fiber optic cable will be installed within its own pipe or sleeve. The duct bank provides mechanical protection for the cable from roadway loading, allows for easier access, and requires less environmental disturbance if a cable repair is necessary post-installation.

The duct bank is expected to be installed via open trenching with conventional construction equipment (e.g., hydraulic excavator, backhoe, dump trucks, etc.). Similar to the installation of water mains and gas lines, saw cutting of roadway and removal of existing pavement is required before excavation of the open trench. Minor tree branch clearing and grading may be required along utility ROWs to accommodate excavation equipment and the stockpiling of soils. Once installation of the duct bank is complete, all trenches will be backfilled, and the road will be restored to its original condition. The top of a duct bank typically requires at least three feet of cover (i.e., properly compacted sand topped by pavement). Any excess soil or soil unsuitable for use as backfill will be transported off-site in accordance with applicable regulations. For construction within utility ROWs, any disturbed vegetated areas will be loamed and seeded to match pre-existing vegetation.

Specialty trenchless crossing methods (e.g., HDD, pipe jacking, direct pipe, auger bore) are expected to be used where the onshore export cables traverse unique features (busy roadways, wetlands, waterbodies, etc.) to avoid associated impacts. Utilization of a specific trenchless crossing method(s)
will depend on location, mechanical loading considerations, safety factors, potential environmental impacts, and other applicable requirements.

Cable Transport, Installation, and Commissioning

Once the duct bank is in place, the onshore export cables are pulled into place via underground splice vaults (i.e., underground concrete chambers) and associated manholes spaced along the duct bank. Onshore cables will be transported to site by truck to reduce the need for a large cable laydown area. Each cable will be installed between splice vaults; a reel containing the cable length will be positioned at one splice vault and the pulling vehicle will be located at the other splice vault. Once cables are installed between the splice vaults, the cables will be spliced together. The supplier will test and commission the cables following cable installation and termination.

10.3.7 The Coastwise Laws (Jones Act)

The deployment strategy for both Projects conforms to the requirements of the Merchant Marine Act of 1920 (Jones Act) and the Passenger Vessel Services Act (PVSA; 46 USC. § 55103). In September 2020, the US House of Representatives passed the Expanding Access to Sustainable Energy Act of 2019, which further affirmed the position that foreign-flagged vessels cannot transport merchandise for offshore wind projects between US ports and highlights that US Customs and Border Protection will enforce these regulations during offshore wind project construction. Congress’ recent amendments to Section 4(a) of the Outer Continental Shelf Lands Act contained in the National Defense Authorization Act for Fiscal Year 2021 also clarified any ambiguity regarding whether US laws (including the Jones Act) governing offshore energy apply equally to the offshore wind industry.

The installation logistics for the Projects has been developed around the main principles of the Jones Act in close cooperation with potential contractors and vessel owners.
Table 10.3-15 summarizes Avangrid’s approach to compliance with the Jones Act, based on current rulings.
Table 10.3-15 Jones Act Compliance Approach

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation installation</td>
<td></td>
</tr>
</tbody>
</table>
Table 10.3-15 Jones Act Compliance Approach

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP Installation</td>
<td></td>
</tr>
<tr>
<td>Cable Installation</td>
<td></td>
</tr>
<tr>
<td>WTG Installation</td>
<td></td>
</tr>
<tr>
<td>Personnel Transport</td>
<td></td>
</tr>
</tbody>
</table>
10.4 Parties Involved

List the party (e.g. the bidder, or equipment/service providers under contract to the bidder) responsible for each deployment activity and describe the role of each party. Describe the status of bidder’s contractual agreements with third-party equipment/service providers.

Table 10.4-1 provides a list of the potential parties involved in deployment of New England Wind 1 and New England Wind 2 along with their scope of responsibility for each of the work packages. This list represents the suppliers with whom Avangrid has been in direct dialogue. Tier 2 suppliers (including port facility owners, crane companies, supply vessel owners, and transport vessel owners) have been approached but are not included in the table below. This list is not exhaustive, as other suppliers are likely to be considered relevant to each of the Projects. A detailed description of the approach to contractor management, including how many contractor bid packages the project team anticipates pursuing, and the status of current agreements, is provided in Section 8. New England Wind 1 advanced procurements are expected to be awarded within 2024.

Table 10.4-1 Parties Potentially Involved in Deployment of the Projects
Table 10.4-1 Parties Potentially Involved in Deployment of the Projects
The sequence of the two Projects and the associated construction details reflect Avangrid’s experience from the construction of Vineyard Wind 1 and the practical realities of the current marketplace. Persistent supply chain shortages in recent years have led to increased costs for components and services. However, both Projects have been carefully formulated to reflect the safest and most efficient construction process possible, while providing the best value to ratepayers. Formulation of the construction and logistics plan has benefited from Avangrid’s experience with Vineyard Wind 1, and incorporates numerous lessons learned and adaptive procedures that were gained through the construction of that project.
11. Operations and Maintenance

This section details the operations and maintenance (O&M) plan for New England Wind 1 and New England Wind 2, which draws heavily from the substantial effort undertaken to develop Avangrid’s first offshore wind project, Vineyard Wind 1, the first commercial-scale offshore wind project in the US to implement an O&M plan. Not only is Avangrid 50% owner and developer of Vineyard Wind 1, but Avangrid serves as the sole operator of the project and signed an Operations and Maintenance Service Agreement and Asset Management Agreement with Vineyard Wind 1, LLC in 2022 (see Attachment 11.0-1 and Attachment 11.0-2). The experience and lessons learned from Vineyard Wind 1, which has a very similar site location, site conditions, and technology to New England Wind 1 and New England 2, provide Avangrid with unparalleled expertise in the development of a thorough and factual O&M concept for the Projects. This O&M plan has also been benchmarked against similar O&M plans developed for the many offshore wind projects owned and operated by Avangrid’s affiliates across the globe (see Section 11.6 and Section 12).

Avangrid is able to take advantage of its established offshore wind O&M team in the US for early implementation of operation and maintenance plans, contracts, and requirements within the two Projects.

Avangrid has accomplished or (if specified) significantly advanced the following key O&M planning and execution milestones:

- Development of a comprehensive “ready-to-operate” O&M plan for both Projects;
- Execution of option and lease agreements for multiple port options (detailed in Section 11.2) to guarantee facility availability in line with the schedule described in Section 9;
- Implementation of a fast and reliable response logistics concept by progressing permitting and design of port facilities able to support Service Operations Vessels (SOVs) and Crew Transfer Vessels (CTVs), similar to the one that was developed in Tisbury, Martha’s Vineyard for Vineyard Wind 1;
- Alignment of operational plans with the issued Final Environmental Impact Statement; and

Mitigation of spare parts risk by contracting a cable storage management system in New England.

Avangrid welcomes questions from the Evaluation Team regarding status updates on any of these key milestones post-submission of this proposal.

Based on experience from Vineyard Wind 1, global projects, and the years already spent refining the O&M plan, Avangrid is confident the O&M plan will readily deliver the following:

11.1. **Operations and Maintenance Plan**

Provide an O&M plan for the project that demonstrates the long-term operational viability of the proposed project.

The plan should include the location of the O&M base, a discussion of the staffing levels proposed for the project, the expected role of the project, sponsor or turbine manufacturer/outside contractor, scheduling of major maintenance activity, the plan for testing equipment.

The O&M plan for New England Wind 1 and New England Wind 2 is defined by Avangrid’s O&M Management System, which is a set of policies, processes, and procedures that ensure satisfaction of all targets required to achieve the O&M principles and goals (see **Figure 11.1-1**). The O&M principles and goals govern which key performance indicators should be monitored on a continuous basis to optimize the maintenance strategy so that targets are met or exceeded. This framework allows Avangrid to deploy an ever-evolving O&M plan that can leverage new technologies and market conditions (e.g., drone repairs, autonomous underwater vehicles, or new service providers).
With clear principles and goals, the management system helps define operational strategies that affect multiple levels:

- O&M logistics strategy
- Organization and workforce strategy
- Project maintenance strategy
- Quality, Health, Safety, and Environment strategy
- Systems and special tools strategy
- Risk management strategy

11.1.1 Logistics Strategy

Based on global experience, and the experience operating Vineyard Wind 1, Avangrid has developed a cost-effective O&M logistics strategy that leverages operational synergies across projects. The team also has a clear understanding of environmental regulations affecting O&M logistics.
11.1.2 Organization and Workforce Strategy

Avangrid’s plan is to fully own and oversee the O&M organization and workforce strategy for New England Wind 1 and New England Wind 2. Following suit from the Vineyard Wind 1 strategy, the Avangrid team will establish an O&M organization and hire a workforce of skilled offshore wind technicians, administration, and management staff that will work together with O&M experts from Avangrid and Iberdrola as well as other competent service providers to maintain a high performance, reliability, and availability of both Projects.

Avangrid will also leverage its operational experience performing asset management activities required to operate and participate in the ISO New England (ISO-NE) market.
The O&M phase for each of the two Projects will create long-term, skilled jobs directly with Avangrid, while the use of major service contractors and their subcontractors will create additional jobs both locally and in the wider supply chain. The O&M workforce can be divided into two key groups:

- Local administrative and management staff:
- Offshore wind technicians:

11.1.3 Project Maintenance Strategy

Avangrid’s O&M philosophy is based on the execution of robust preventative maintenance designed to minimize the need for corrective intervention. With respect to corrective maintenance, Avangrid’s approach is centered on constant readiness so repairs can be executed as effectively and efficiently as possible.

11.1.3.1 Preventative Maintenance

Avangrid will take advantage of low wind periods to conduct planned visits to the WTGs to perform preventative maintenance. The different types of planned preventative maintenance are:

- Scheduled maintenance:
- Risk-based maintenance:

- **Condition-based maintenance:**

Table 11.1-1 describes example maintenance strategies and inspection activities for key components.

<table>
<thead>
<tr>
<th>Preventative Maintenance Strategy Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Preventative Maintenance Strategy Examples

<table>
<thead>
<tr>
<th>Corrective Intervention</th>
<th>Extraordinary Maintenance Campaigns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.1.3.2 Corrective Intervention

11.1.3.3 Extraordinary Maintenance Campaigns
11.1.4 **Spare Parts**

O&M close-to-project spare parts management will be implemented throughout New England.

As discussed in Section 10, the complex nature of developing and maintaining offshore wind projects requires that the two Projects identify a number of assets and facilities, as well as backup and optional facilities for contingency planning.

11.1.5 **Systems and Tools Strategy**

Avangrid will use systems and tools that are proven and in use by Avangrid today to manage day-to-day operations (see Table 11.1-2). These systems and tools will be further optimized by leveraging operational data from Vineyard Wind 1, enabling the Avangrid team to implement a fully functional strategy for the two Projects.

<table>
<thead>
<tr>
<th>Table 11.1-2</th>
<th>Examples of Systems and Tools Used to Manage Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11-10
<table>
<thead>
<tr>
<th>System/Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System A</td>
<td>Description A</td>
</tr>
<tr>
<td>System B</td>
<td>Description B</td>
</tr>
<tr>
<td>System C</td>
<td>Description C</td>
</tr>
<tr>
<td>System D</td>
<td>Description D</td>
</tr>
<tr>
<td>System E</td>
<td>Description E</td>
</tr>
<tr>
<td>System F</td>
<td>Description F</td>
</tr>
<tr>
<td>System G</td>
<td>Description G</td>
</tr>
<tr>
<td>System H</td>
<td>Description H</td>
</tr>
<tr>
<td>System I</td>
<td>Description I</td>
</tr>
<tr>
<td>System J</td>
<td>Description J</td>
</tr>
</tbody>
</table>
11.6 Health and Safety Strategy

Health and safety are top priorities for Avangrid. The O&M requirements have been incorporated into the design of the technical concept for the two Projects at the outset, not only to ensure high reliability but, more importantly, to ensure the highest levels of health and safety for all personnel. During the operational phase, safe systems of work such as risk assessments, method statements, lock-out/tag-out processes, lifting plans, and a permit-to-work system will be developed and implemented before work begins. The safe systems of work will be based on regulatory Health, Safety and Environment requirements, project requirements, and best practices, as well as the adoption of international standards to the extent possible and beneficial.

11.7 Risk Management Strategy

To ensure the long-term success of New England Wind 1 and New England Wind 2, the O&M plan will deploy a risk management strategy with a focus on personnel safety, environmental impact, and asset integrity. The local project team will manage and mitigate risks with support from teams of specialists working across Avangrid’s and its affiliates’ combined global portfolio, sharing best practices.

11.2 Marine Terminals and Waterfront Facilities Site Control

Please provide documentation to demonstrate site control for all marine terminals and other waterfront facilities that will be used for O&M.

- If available, evidence that the bidder or the equipment/service provider have right(s) to use a marine terminal and/or waterfront facility for O&M of the offshore wind energy project (e.g., by virtue of ownership or land development rights obtained from the owner).
- If not available, describe the status of acquisition of real property rights for necessary marine terminal and/or waterfront facilities, any options in place for the exercise of these rights and describe the plan for securing the necessary real property rights, including the proposed timeline. Include these plans and the timeline in the overall project schedule.
- Identify any joint use of existing or proposed real property rights for marine terminal or waterfront facilities.

The O&M logistics plan endeavors to deliver reliable, cost-effective energy to Massachusetts ratepayers while, as detailed further in Section 13, maximizing the economic, social, and positive environmental benefits of the two Projects for Massachusetts and New England.

Requirements for marine terminals and waterfront facilities during the operations phase are largely determined by the O&M logistics strategy.
The frequency of vessel trips makes proximity to the Offshore Wind Energy Generation site an important factor in locating O&M facilities, particularly for CTVs.

The O&M logistics strategy centers around the development of a service hub for logistics management, as well as the existing facility on Martha’s Vineyard that was developed for Vineyard Wind 1. Additional optional and backup facilities have been identified throughout New England to support the long-term operations of the Projects. The locations, acquisition status, and existing or joint uses of the primary facilities to be used as part of the O&M strategy are summarized herein.
11.2.3 Martha’s Vineyard

The Tisbury Marine Terminal in Vineyard Haven, currently being developed by Vineyard Wind 1, is the closest marine facility to the Offshore Wind Energy Generation site (Figure 11.2-4). While the primary O&M facility for New England Wind 1 and New England Wind 2 is located [location], the proximity of the Vineyard Haven facility to the site makes it an excellent port of opportunity if rapid
launching of personnel or equipment is required.

Figure 11.2-4 Rendering of Tisbury Marine Terminal in Tisbury, MA

Source: Foth Infrastructure & Environment

11.3. Funding Mechanisms and Levels for Operations and Maintenance

Describe in detail the proposed O&M funding mechanism and funding levels to support planned and unplanned O&M requirements.
11.4. **Equipment Warranties and Guarantees**

Describe the terms (or expected terms) of the warranties and/or guarantees on major equipment that the bidder is utilizing or proposing to utilize.

Avangrid will negotiate industry-standard warranty periods as part of equipment supply agreements on all major project components. Warranties will be those that are typically available for offshore wind projects and aligned with industry best practice.

11.4.1 **Wind Turbine Generators**

The warranty agreement is expected to include the coverages outlined in Table 11.4-1 below.

<table>
<thead>
<tr>
<th>Table 11.4-1 Full Service and Warranty Agreements with WTG OEM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11.4-1 Full Service and Warranty Agreements with WTG OEM

<table>
<thead>
<tr>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description 1</td>
<td>Description 2</td>
<td>Description 3</td>
</tr>
<tr>
<td>Description 4</td>
<td>Description 5</td>
<td>Description 6</td>
</tr>
<tr>
<td>Description 7</td>
<td>Description 8</td>
<td>Description 9</td>
</tr>
</tbody>
</table>

11.4.2 Balance of Plant

Table 11.4-2 below outlines the warranties and coverages Avangrid anticipates securing for BOP components.

<table>
<thead>
<tr>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description 1</td>
<td>Description 2</td>
<td>Description 3</td>
</tr>
<tr>
<td>Description 4</td>
<td>Description 5</td>
<td>Description 6</td>
</tr>
<tr>
<td>Description 7</td>
<td>Description 8</td>
<td>Description 9</td>
</tr>
</tbody>
</table>
11.5. Status and Plans for Operations and Maintenance Agreements/Contracts

Describe the status of the project sponsor in securing any O&M agreements or contracts.

Include a discussion of the sponsor’s plan for securing a medium-term or long-term O&M contract, including the expected provider of O&M services.

Avangrid has significant experience securing such contracts, having undertaken this work already for Vineyard Wind 1 and several Iberdrola offshore wind projects in Europe. Avangrid has executed an O&M agreement as part of the WTG Engineering, Procurement, and Construction supply agreement for Vineyard Wind 1 with GE to serve as the WTG and O&M supplier for that project. Experience from this process will be incorporated into the solicitation for the contracts required to support the operational phase of New England Wind 1 and New England Wind 2. Avangrid is confident that all required O&M agreements will be in place well in advance of the commencement of operations.

Table 11.5-1 lists the key O&M agreements that will be secured prior to financial close.

Table 11.5-1 Key O&M Agreements to be Secured Prior to Financial Close
Table 11.5-1 Key O&M Agreements to be Secured Prior to Financial Close

<table>
<thead>
<tr>
<th>Agreement 1</th>
<th>Agreement 2</th>
<th>Agreement 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreement 4</td>
<td>Agreement 5</td>
<td>Agreement 6</td>
</tr>
<tr>
<td>Agreement 7</td>
<td>Agreement 8</td>
<td>Agreement 9</td>
</tr>
<tr>
<td>Agreement 10</td>
<td>Agreement 11</td>
<td>Agreement 12</td>
</tr>
<tr>
<td>Agreement 13</td>
<td>Agreement 14</td>
<td>Agreement 15</td>
</tr>
<tr>
<td>Agreement 16</td>
<td>Agreement 17</td>
<td>Agreement 18</td>
</tr>
<tr>
<td>Agreement 19</td>
<td>Agreement 20</td>
<td>Agreement 21</td>
</tr>
<tr>
<td>Agreement 22</td>
<td>Agreement 23</td>
<td>Agreement 24</td>
</tr>
<tr>
<td>Agreement 25</td>
<td>Agreement 26</td>
<td>Agreement 27</td>
</tr>
<tr>
<td>Agreement 28</td>
<td>Agreement 29</td>
<td>Agreement 30</td>
</tr>
</tbody>
</table>

Experience with Operations and Maintenance Services for Similar Projects

As described in Section 12, Avangrid and its affiliates have extensive O&M experience with multiple offshore wind projects. Avangrid is also actively developing new offshore wind projects. This expertise, including technical know-how, will be used in support of the two Projects. The experience gained in Vineyard Wind 1 in preparing for and executing the operations phase, as well as the ongoing experience from operating it, will also be leveraged to the benefit of New England Wind 1 and New England Wind 2.

11.6.1 Avangrid

Avangrid has more than 9,200 MW of owned and controlled renewable generation capacity, primarily wind and solar, across 24 states. In addition to New England Wind 1 and New England Wind 2, Avangrid is currently developing Kitty Hawk Wind, an offshore wind project proposed in North Carolina (up to 3,500 MW). Through owning and operating four onshore wind projects in the ISO-NE region, Avangrid has years of experience as a Lead Market Participant and is a registered Designated Entity in ISO-NE. Please see Attachment 12.2-1 for a detailed list of onshore wind projects owned and operated by Avangrid to demonstrate the breadth of operational expertise.
Most importantly, Avangrid is also the contracted O&M provider for Vineyard Wind 1. Through this role, Avangrid leads the industry as one of the first developers to have O&M experience in the US. This has produced a detailed understanding of what is required to achieve operational success safely and efficiently while remaining in adherence to all relevant US regulations. Continued campaigns to commission and service offshore components for Vineyard Wind 1 will further bolster the capacity for Avangrid to establish successful O&M logistics in the region and create solutions to unforeseen challenges that will be inherent to offshore operations unique to New England.

11.6.2 Iberdrola

Avangrid is part of a growing global network of onshore and offshore wind expertise within the Iberdrola Group, allowing the Avangrid O&M team to benefit from ongoing experience gathered by contemporaries abroad. The Iberdrola Group is the world’s leading producer of wind power and one of the biggest electric utilities globally in terms of market capitalization. With more than 4,900 MW of offshore wind capacity in operation or under construction (including Vineyard Wind 1), the Iberdrola Group has established itself globally as a leading offshore wind developer with a significant pipeline of projects spanning Europe, South America, and East and Southeast Asia.

The Iberdrola Group has been responsible for offshore wind projects of similar size, distance from shore, and/or water depth as the two Projects, which also follows a similar design as offshore wind projects developed, constructed, and operated by the Iberdrola Group globally. Avangrid O&M staff are regularly given opportunities to tour and collaborate onsite with European colleagues, allowing for invaluable in-person perspective on critical lessons learned. Iberdrola O&M subject matter experts have regularly engaged with project staff to provide conceptual input. The diversity of marine conditions, equipment types, and logistic variables represented in the Iberdrola offshore wind portfolio has offered Avangrid a frame of reference for incorporating best management practices and tested procedures from around the world into new strategies that encompass all aspects of O&M for New England Wind 1 and New England Wind 2.

Many contractors and consultants involved in roles supporting O&M preparations for Avangrid were identified as a result of their experience and ongoing engagement with other projects operated by Iberdrola. More details on the status of the Iberdrola Group’s advanced projects can be found in Section 12.
12. Project Management/Experience

Through its in-depth experience and active development of the Vineyard Wind 1 project, Avangrid (or the Company) is leading the US offshore wind industry as one of the first developers in the country to obtain permitting approval at the federal and state levels, conclude procurement and contracting for all major contract packages, finalize interconnection agreements, successfully implement a financing plan, and achieve first power for a commercial-scale offshore wind project. Avangrid has a deep understanding of what is required to develop, permit, finance, and construct offshore wind projects in the US. The Company’s understanding is further enhanced by its close relationship with the Iberdrola Group, one of the largest offshore wind developers in the world with over 4,900 MW of capacity in operation or under construction, including Vineyard Wind 1.

After obtaining all permits in the spring of 2021, Vineyard Wind 1 became the first US commercial-scale offshore wind project to achieve financial close in September 2021. Attaining this major milestone enabled Vineyard Wind 1 to provide a Notice to Proceed to its contractors, which allowed suppliers to start hiring, training, and mobilizing for offshore construction. Onshore construction in the Town of Barnstable is now complete and offshore construction activities are well underway, with 47 foundations, 30 transition pieces, and 10 wind turbine generators (WTGs) installed as of March 1, 2024, providing additional direct experience that will benefit New England Wind 1 and New England Wind 2 (the Projects). Notably, Vineyard Wind 1 achieved a momentous milestone earlier this year when the project delivered first power to the electricity grid.

Avangrid’s offshore wind team of nearly 150 full-time equivalent (FTE) positions, which includes some of the most experienced offshore wind professionals in the world, possesses the resources, capacity, and expertise required to successfully drive the Projects from development to construction and, ultimately, the operations and maintenance (O&M) period. Most of the personnel on this team are already dedicated exclusively to advancing the Projects, which have been in development since 2020. Avangrid’s offshore wind team is supported by a suite of consultants and partners, many of whom have been working on the Projects for years and who also have supported, and in many cases continue to support, the development of Vineyard Wind 1, creating continuity and the opportunity to leverage lessons learned. Finally, the successes of the Projects are further assured by the vast global offshore wind expertise and management capabilities of Avangrid’s affiliates, as described in Section 12.2.2.

12.1. Organizational Chart

Provide an organizational chart for the project that lists the project participants and identifies the corporate structure, including general and limited partners.

1 Vineyard Wind 1 is a 50/50 joint venture with CIP P/S. Vineyard Wind 1 has obtained permitting approval at the federal and state levels, concluded procurement and contracting for all major contract packages, finalized interconnection agreements, successfully implemented a financing plan, and begun construction, with first power delivered in January 2024.

12.1.1 Corporate Structure

Pioneers in US renewable energy development, Avangrid Renewables, LLC (Avangrid Renewables) was formed in 1995 and executed its first renewable energy transaction in 1999. Avangrid Renewables is an Oregon Limited Liability Company and direct subsidiary of Avangrid Renewables Holdings, Inc. Avangrid Renewables is an indirect subsidiary of Avangrid, Inc. and part of the Iberdrola Group, led by Iberdrola, S.A. (Iberdrola). Avangrid, Inc. is 81.6% owned by Iberdrola and the remaining shares are publicly traded on the New York Stock Exchange (NYSE: AGR). Figure 12.1-1 summarizes these relationships and how the Projects fit in.

Figure 12.1-1 Avangrid Business Entity Ownership Structure

![Avangrid Business Entity Ownership Structure](image)

Avangrid’s relationship to the Iberdrola Group allows it to benefit from the experience of its affiliates, such as Avangrid Networks, Inc. (Avangrid Networks), ScottishPower Renewable Energy Ltd.

3 On March 6, 2024, Avangrid received a non-binding proposal from Iberdrola to acquire all the issued and outstanding shares of common stock of Avangrid not already owned by Iberdrola or its affiliates. The Unaffiliated Committee of the Avangrid Board of Directors, comprised of three independent members of the Avangrid Board of Directors, is responsible for evaluating negotiating, and approving or disapproving the proposal, advised by independent financial and legal advisors. No decision has yet been made with respect to Avangrid’s response to the proposal or any alternatives thereto. Additional information regarding this non-binding offer can be found in Avangrid’s Form 8-K filed with the Securities & Exchange Commission on March 7, 2024: https://www.avangrid.com/investors/investors/secfilings
(ScottishPower Renewables), and Iberdrola Renovables SAS (Iberdrola Renovables). These affiliates have substantial expertise in offshore and onshore wind development, transmission project development, finance, construction, and operations. Additional details on Avangrid and its affiliates are provided in Section 5.

12.1.2 Project Ownership History

Avangrid is the current owner of the Projects through the business entity ownership structure depicted in Figure 12.1-1. Previously, the Projects were owned by the joint venture Vineyard Wind LLC (now Vineyard Wind 1 LLC), but in September 2021, Avangrid and Copenhagen Infrastructure Partners (CIP) announced a restructuring of the joint venture. While Vineyard Wind 1 continues to be developed as a 50/50 project between the two entities, Avangrid took full ownership of Lease Area OCS-A 0534 in January 2022, following an approval by the Bureau of Ocean Energy Management (BOEM) of the assignment of Lease OCS-A 0534 from Vineyard Wind LLC to Park City Wind LLC, now a wholly owned subsidiary of Avangrid. Further details about the reassignment of Lease OCS-A 0534 can be found in Section 6. The outcome of the restructuring can be seen in Figure 12.1-2.

Figure 12.1-2 Avangrid Offshore Wind Projects in New England
12.1.3 Project Team

Avangrid has a strong, experienced team of professionals dedicated solely to advancing the Projects. The team is steered by leaders shown in Figure 12.1-3 below. Biographies of key personnel assigned to the Projects are included in Section 12.3.2 and an organizational chart showing all personnel currently working on the Projects can be found in Attachment 12.1-1.

12.1.4 Key Consultants and Service Providers

Key consultants and service providers supporting the Projects are depicted in Figure 12.1-4 and described in Table 12.2-2. Several of these consultants and service providers are based in or operate in Massachusetts. Partners and consultants involved in economic development, workforce training, supply chain, and research initiatives to support the Projects are discussed further in Section 13.
12.2. **Project Experience**

Provide statements that list the specific experience of the bidder and each of the project participants (including, when applicable, the bidder, partners, and proposed contractors), in developing, financing, owning, and operating generating and delivery facilities, other projects of similar type, size and technology, and any evidence that the project participants have worked jointly on other projects.

As later described in **Section 12.3**, Avangrid’s team of industry experts has a long track record of developing offshore and onshore wind projects across the globe. The team is supported by the experienced personnel working for Avangrid’s affiliates as well as expert consultants with knowledge in offshore wind, permitting, environmental affairs, and local infrastructure construction. Avangrid has assembled a well-rounded team with the diverse skillset required to develop and operate the Projects.

12.2.1 **Avangrid Experience**

As a first mover in the US offshore wind industry, Avangrid has significant experience that puts it at an advantage relative to many other developers. Avangrid is also a leading developer for onshore renewable generation and transmission facilities. Moreover, Avangrid has the benefit of being part of a strong network of affiliates that are experienced in developing, financing, owning, and operating generation and transmission facilities across the country, which complements the Company’s and its partners’ specific expertise in developing, permitting, financing, constructing, and/or operating offshore wind projects.

12.2.1.1 **Onshore Experience**

Avangrid is the third-largest developer of onshore wind projects in the US and strives to lead the transformation to a sustainable, competitive, and clean energy future. As of September 30, 2023, the Company has more than 9,600 megawatts (MW) of installed capacity across the country, including 8,045 MW of installed onshore wind capacity from 67 sites.

The map provided in Figure 12.2-1 shows Avangrid’s wind, solar, thermal generation, hydroelectric generation, and electric/natural gas distribution networks across the US. The geographic diversity of
Avangrid’s project portfolio allows the Company to optimize lessons learned across different regions, markets, and operating conditions and maximize generation capabilities for each project. Attachment 12.2-1 provides an overview of Avangrid’s onshore renewable energy generation projects as of December 2023.

Figure 12.2-1 Avangrid Footprint

12.2.1.2 Offshore Wind Experience

Avangrid has a team of nearly 150 locally based offshore wind employees supporting its US projects as well as a US Offshore Wind Center of Excellence in Boston, Massachusetts. With the Vineyard Wind 1 project, Avangrid is a part of the first team in the US to bring a commercial-scale offshore wind project to completion in the federal and state permitting process, conclude procurement and contracting for all major contract packages, finalize interconnection agreements, achieve financial close, and begin onshore and offshore construction activities. The permitting, financing, and technology required for Vineyard Wind 1 are very similar to that of the Projects.

The Projects are among the most mature uncontracted offshore wind projects able to serve New England, particularly New England Wind 1. As detailed in Section 7, permitting for the Projects has been actively underway since 2020, when the New England Wind Construction and Operations Plan (COP)\(^4\) was filed with BOEM. The New England Wind COP is on track to be approved in July 2024. Furthermore, as of February 2024, New England Wind 1 obtained all major state, regional, and local permits required for construction and interconnection. The Avangrid team has also advanced procurement activities for all key packages for the Projects.

This experience will lead to substantial benefits for the remainder of the New England Wind 1 (and New England Wind 2) procurement strategy, high confidence in schedule, and high certainty for the cost estimations underlying this proposal, as detailed in Sections 8, 9, and 10.

Avangrid also holds two offshore leases off North Carolina—Lease Area OCS-A 0508 and Lease Area OCS-A 0559—which together total 122,000 acres and are being developed as the Kitty Hawk Wind North and Kitty Hawk Wind South projects (together, Kitty Hawk Wind), and which represent approximately 3,500 MW of potential offshore wind capacity. The Company has commenced development activities in these lease areas and submitted a Site Assessment Plan and COP to BOEM for both projects. On July 30, 2021, BOEM published a Notice of Intent to prepare an Environmental Impact Statement for Kitty Hawk Wind North.

The knowledge gained from Vineyard Wind 1, New England Wind 1, New England Wind 2, and Kitty Hawk Wind places Avangrid at the forefront of experience in developing commercial-scale offshore wind projects in the US. If successful in securing power purchase agreements (PPAs) to develop the Projects offered in this proposal, the Company would leverage its deep experience, as well as its significant purchasing power and its expert team, to achieve safe, on-time, and reliable projects for Massachusetts ratepayers.

12.2.2 Iberdrola Group

With more than 4,900 MW of offshore wind capacity in operation or under construction (including Vineyard Wind 1), the Iberdrola Group has established itself globally as a leading offshore wind developer with a significant pipeline of projects spanning Europe, South America, and East and Southeast Asia. The Iberdrola Group has been responsible for offshore wind projects of similar size, distance from shore, and/or water depth as the Projects, which also follow a similar design as offshore wind projects developed, constructed, and operated by the Iberdrola Group globally, as shown in Figure 12.2-2 below.

The Iberdrola Group is a leading producer of wind power and one of the biggest electric utilities globally in terms of market capitalization. The Iberdrola Group’s offshore business has over 900 directly employed individuals who possess skills and experience in the full spectrum of offshore wind requirements: permitting and development, transmission, finance, construction, and O&M. The Iberdrola Group’s offshore wind strategy is focused on developing operational hubs in key regions, including the US, with a current emphasis on the Atlantic Coast, Europe, and Asia. The Iberdrola Group has three operational projects in the UK and Europe and an additional four under construction.

The Iberdrola Group’s first offshore wind project, West of Duddon Sands, was a joint venture between ScottishPower Renewables and Ørsted. This project featured 108 3.6 MW Siemens WTGs with a total capacity of 389 MW (194 MW Scottish Power share) and has been fully operational since 2014. Wikinger followed shortly after as the Iberdrola Group’s first solo project. Wikinger is a 350 MW project based in the German Baltic Sea featuring 70 Areva 5 MW WTGs. Wikinger has been fully operational since 2018. East Anglia ONE, which became fully operational in July 2020, is the Iberdrola Group’s largest project completed to date, with 102 Siemens Gamesa 7 MW WTGs and an installed
capacity of 714 MW. The Iberdrola Group has also started construction of several other projects, as summarized in Table 12.2-1, including the 496 MW Saint-Brieuc project off the coast of France, which achieved first export in July 2023.

Table 12.2-1 Status of Key Projects from Iberdrola Group’s Non-US Portfolio

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Capacity (MW)</th>
<th>Development</th>
<th>Financing</th>
<th>Construction</th>
<th>O&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>West of Duddon Sands¹</td>
<td>389</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Wikinger²</td>
<td>350</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>East Anglia ONE³</td>
<td>714</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Saint-Brieuc</td>
<td>496</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Baltic Eagle⁴</td>
<td>476</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Windanker</td>
<td>315</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
Table 12.2-1 Status of Key Projects from Iberdrola Group’s Non-US Portfolio

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Capacity (MW)</th>
<th>Development</th>
<th>Financing</th>
<th>Construction</th>
<th>O&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Anglia THREE5</td>
<td>1,400</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>East Anglia ONE North5 and East Anglia TWO5</td>
<td>1,600</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machair</td>
<td>2,000</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marram6</td>
<td>3,000</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campion5</td>
<td>2,000</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 projects</td>
<td>12 projects</td>
<td>7 projects</td>
<td>7 projects</td>
<td>3 projects</td>
<td></td>
</tr>
<tr>
<td>12,734 MW</td>
<td>12,734 MW</td>
<td>4,134 MW</td>
<td>4,134 MW</td>
<td>1,453 MW</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. This is a 50/50 joint venture between ScottishPower Renewables and Ørsted.
2. This is a 51/49 ownership structure with Iberdrola Renewables Deutschland and Energy Infrastructure Partners.
3. This is a 60/40 ownership structure between ScottishPower Renewables and Bilbao Offshore Holding Limited.
4. This is a 51/49 ownership structure with Iberdrola Renewables Deutschland and Masdar.
5. This project is being developed as a macro-complex, East Anglia Hub.
6. Marram and Campion are 50/50 joint ventures with Shell.

12.2.3 Project Development Partners

Avangrid works with a number of partners and expert consultants to support its offshore wind project development efforts.
<table>
<thead>
<tr>
<th>Project Partners and Consultants</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Partners and Consultants</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.3. Management and Key Personnel

Provide a management chart that lists the key personnel dedicated to this project and provide resumes of the key personnel. Key personnel of the bidder’s development team having substantial project management responsibilities must have:

- Successfully developed and/or operated one or more projects of similar size or complexity or requiring similar skill sets; and
- Experience in financing power generation projects (or have the financial means to finance the project on the bidder’s balance sheet).

Avangrid’s offshore team of approximately 150 FTE positions is comprised of highly qualified and experienced individuals. Guiding the offshore team, the Company’s senior leadership is based in the US yet has the full resources of the global Iberdrola Group available to support them in successfully executing the Projects. Biographical details of the Executive Team members, Offshore Management Team members, and other key development and delivery team personnel for both Projects are provided below.
12.3.1 Avangrid Executive Team

Avangrid’s Executive Team, pictured in Figure 12.3-1, brings together expertise from different parts of the organization to make key strategic decisions and direct the execution of tactical decisions by the Company.

Figure 12.3-1 Avangrid Executive Team

Pedro Azagra Blazquez, Chief Executive Officer of Avangrid, Inc.

Pedro Azagra Blazquez was appointed to the position of Chief Executive Officer (CEO) in May 2022. Pedro has served as a member of the Avangrid Board of Directors since 2019, and previously served as a member of the Board of Directors from 2014 to 2018.

Pedro formerly served as the Chief Development Officer for Iberdrola, where he executed more than 100 transactions and led the international expansion of the Iberdrola Group. Pedro holds a degree in Law and Business Administration from Universidad Pontificia de Comillas (Spain) and a master’s in Business Administration (MBA) from the University of Chicago.

Catherine Stempien, President and Chief Executive Officer of Avangrid Networks, Inc.

Catherine Stempien was appointed to the position of President and CEO of Avangrid Networks in February 2021. In this role, Catherine oversees Avangrid Networks’ eight electric and gas utilities, serving approximately 3.3 million customers across New York and New England. She is also responsible for regulatory affairs, asset management, and planning for Avangrid Networks.

Previously, Catherine served as President of Duke Energy Florida. She also held a variety of executive roles at Duke including Senior Vice President of Corporate Development and various leadership positions in the company’s legal department. Catherine holds a bachelor’s degree in Government from Dartmouth College and a Juris Doctorate (J.D.) degree from the Boston University School of Law. She also completed the Advanced Management Program at Harvard Business School.
Jose Antonio Miranda, President and Chief Executive Officer of Avangrid Renewables, LLC

Jose Antonio Miranda was appointed as Avangrid Renewables’ Onshore President and CEO in October 2021 and then was appointed to CEO of all Avangrid Renewables in September 2022. He leads the growth and development of the Company’s offshore and onshore wind portfolios, as well as its solar pipeline in the United States. Jose Antonio has extensive renewables leadership experience. Prior to joining Avangrid Renewables, he served as CEO of Onshore in the Americas region for Siemens Gamesa and Chairman of its boards in the US, Mexico, and Brazil. He also served as Secretary of the Board and Executive Committee member of the American Wind Energy Association. Prior to his 14-year tenure at Siemens Gamesa where he held roles in Europe, Asia, and the Americas, he held a variety of roles over a 10-year period at the multinational engineering firm ABB. He was appointed to the Board of Directors for the American Clean Power Association in 2022.

Jose Antonio holds a bachelor’s and master’s degree in Industrial Engineering from Oviedo University (Spain) and an MBA from Universidad Pontificia de Comillas (Spain).

Ignacio Estella, Senior Vice President – Corporate Development

Ignacio Estella has served as Senior Vice President – Corporate Development since December 2015 and is responsible for delivering non-organic growth opportunities for the Company beyond those of its present businesses. Ignacio most recently served as Corporate Vice President of Business Origination of Iberdrola and, prior to that, as Gas Markets Development Director.

Ignacio holds a degree in Law and Business Administration from Universidad Pontificia de Comillas (Spain) and a master’s degree in Public Administration from Harvard University, with concentrations in Industry Analysis and Strategic Negotiation.

Alfredo Del Canto, Senior Vice President – Chief of Staff

Alfredo del Canto joined Avangrid as the Senior Vice President – Chief of Staff in April 2023. He manages a team that provides operational, financial, and strategic oversight for the CEO of Avangrid. He previously worked at Iberdrola for 15 years. His most recent role was the Head of Finance, Regulation, and Energy Policy at the Chairman and CEO’s Office serving as the liaison with the executive leadership team to implement strategic processes and prepare for board meetings, executive and operating committees, and the General Shareholders’ meeting. His prior roles at Iberdrola include representing the company at the International Energy Agency; planning, reporting, and regulation for Iberdrola’s global networks business; and Corporate Development. Alfredo began his career at Repsol working in financial risk.

Alfredo holds a degree in industrial engineering from ICAI (Universidad Pontificia Comillas) and a master’s degree in management of energy companies from IESE Business School.

R. Scott Mahoney, Senior Vice President – General Counsel and Secretary

Scott Mahoney has served as Senior Vice President – General Counsel for Avangrid since December 2015 and was appointed Secretary of the Board of Directors of Avangrid in January 2016. Scott previously served in several legal and senior executive positions at Avangrid subsidiaries including Vice President – General Counsel and Secretary of Avangrid Networks. Prior to joining Avangrid, Scott served as an attorney in the US Army Judge Advocate General’s Corps, earning a Bronze Star for
service in Iraq during Operation Desert Storm. Scott serves on the board of directors of the Gulf of Maine Research Institute.

Scott holds a J.D. from the University of Maine and a master’s degree, with honors, in Environmental Law from Vermont Law School. Scott also holds a Postgraduate Diploma in Business Administration from the University of Warwick. He is a member of the bar in Maine, New York, the US Court of Appeals, the US District Court, and the US Court of Military Appeals. Scott is a Certified Compliance and Ethics Professional and a member of the Society of Corporate Compliance and Ethics.

Kimberly Harriman, Senior Vice President – State Government Affairs and Corporate Communications

Kim Harriman was appointed to the position of Senior Vice President, State Government Affairs and Corporate Communications in June 2022. Kim joined Avangrid at the end of 2020 as Vice President, State Government Relations and Public Affairs, coordinating state government relations and public affairs for electric and gas utility subsidiaries in New York, Connecticut, Massachusetts, and Maine and renewable onshore and offshore energy projects across 22 states.

Prior to Avangrid, Kim worked for over 20 years on energy issues for the state of New York. She holds a bachelor’s degree in Political Science from Siena College and a J.D. from Albany Law School of Union University.

Kyra Patterson, Senior Vice President and Chief Human Resources Officer

Kyra Patterson was appointed to the position of Senior Vice President and Chief Human Resources Officer of Avangrid in November 2021. She leads all facets of the Human Resources (HR) organization, including talent management, diversity and inclusion, compensation and benefits, employee and labor relations, as well as strategic planning and organizational effectiveness. She most recently served as Vice President – People Operations at Avangrid and was responsible for labor relations, employee relations, HR shared service center, HR policy, and compliance. Prior to joining Avangrid, Kyra was the Director – Diversity and Inclusion at Diageo, N.A., successfully leading the company’s diversity, equity, and inclusion efforts. Throughout her career, she has provided subject matter expertise, thought leadership, and cross-cutting partnership to establish alignment between HR strategy, company culture, and business goals and outcomes.

Kyra holds a bachelor’s degree in English from Prairie View A&M University and a master’s degree in Labor and Human Resources from Ohio State University. She serves as a member of the American Association of Blacks in Energy.

Justin Lagasse, Interim Chief Financial Officer and Senior Vice President – Controller

Justin Lagasse was appointed Senior Vice President – Controller in July 2023 and was appointed Interim Chief Financial Officer in November 2023. He is responsible for all aspects of accounting, financial reporting, business performance, long-term planning, and administration for Avangrid and its two lines of business, Networks and Renewables. Prior to this role, Justin most recently served as Vice President, Chief Accounting Officer and was responsible for corporate accounting, consolidations and reporting, technical accounting, and internal accounts. Before joining Avangrid, Justin served as Assurance Director at BDO, LLP in Southern California and Assurance Senior at a regional accounting firm in Maine.
Justin holds a bachelor’s degree in accounting and an MBA from Thomas College and holds an active Certified Public Accountant license in Maine.

12.3.2 Project Team

The advancement of New England Wind 1 and New England Wind 2 to the level of having an established delivery team shown in Attachment 12.1-1 is a testament to the extraordinary maturity of not only the development of both Projects, but also their design, engineering, and procurement. The team has the collective experience and in-depth, Project-specific knowledge required to confidently execute the Projects per the schedule described in Section 9. The personnel described below represent key individuals dedicated to the Projects and are only a subset of the nearly 150 FTE positions dedicated to advancing the Projects. Resumes for key personnel are included in Attachment 12.3-1.

12.3.2.1 Key Personnel – Management

The management personnel listed below represent the key individuals leading strategic decision making for the Projects. These individuals have already worked to identify appropriate pathways to execution for all project stages, from development to construction to operations and decommissioning.

• **Sy Oytan, Chief Operating Officer – Offshore:** Sy Oytan has over 25 years of experience in the development and construction of international onshore and offshore wind projects around the world, including the US, Asia, and Europe. During his career, he led the development, delivery, and construction of 6,500 MW of onshore and offshore wind energy projects. Sy led a range of offshore wind port and supply chain development initiatives for the State of New Jersey with a $400 million strategic investment plan. He has an international background with living and working experience in the US, Norway, Germany, Denmark, Turkey, and Singapore. He has held a variety of leadership positions at Arup, the New Jersey Economic Development Authority, Siemens Gamesa, and Schlumberger. Sy holds a master’s degree in Industrial Management from Clemson University.

• **Kenneth Kimmell, Chief Development Officer – Offshore:** Ken Kimmell leads a team of engineers, permitting specialists, and other staff to secure all the federal, state, regional, and local permits needed for Avangrid’s offshore wind projects. He is responsible for building stakeholder support for these projects, ensuring the projects comply with all workforce and non-workforce bid commitments, media relations, and supporting the work of other teams in developing new projects. Ken has been involved in offshore wind since 2007, when he served in state government as General Counsel to the Executive Office of Energy and Environmental Affairs for Massachusetts. In that position, he wrote and helped secure enactment of pathbreaking legislation to authorize long-term contracts for offshore wind. He also oversaw the state permitting of an offshore wind project and the defense of its state permits that were challenged in court. As Commissioner of the Massachusetts Department of Environmental Protection, he issued permits for the construction of the New Bedford Marine Commerce Terminal. As president of the Union of Concerned Scientists, he helped develop tax incentive legislation pertinent to offshore wind. Ken holds a J.D. from the

5 While some positions will be filled after a PPA is awarded and executed, the Projects (New England Wind 1 and New England Wind 2) have approximately 150 dedicated FTEs in place as of December 2023.
University of California, Los Angeles School of Law and a bachelor’s degree in Economics and Political Science from Wesleyan University.

- **Iker Garcia Magrach, Vice President – Offshore Projects and Project Director:** Iker manages all packages for New England Wind 1 and New England Wind 2. In the past, he was responsible for the Global Offshore Installation Department at Iberdrola Renovables, which coordinates the teams for foundation, cable, and WTG installation, and establishes site offices, marine warranty surveyors, and marine expertise across the entire offshore pipeline in Iberdrola Renovables. Iker also was the Construction package manager on the pre-final investment decision stage of Vineyard Wind 1. He has more than 20 years of international experience in the wind industry and was previously responsible for the Onshore International Construction Department within Iberdrola Renovables. Iker holds a degree in Industrial Engineering from the University of Bilbao (Spain), an MBA from Instituto Empresa (Spain), and a Project Management Graduate Certificate from Harvard University.

- **Nuria Soto, Vice President – Operations and Maintenance:** Nuria Soto has more than 12 years of experience in O&M. She has been Head of O&M Services and Head of Supply Chain at Iberdrola. Her main responsibilities have been to ensure that projects are fully set up for the efficient transfer from construction to O&M, as well as developing and implementing O&M strategies in the US. She has a bachelor’s degree in Mechanical Engineering from Technische Universität Dresden (Germany), a master’s degree in Industrial Engineering from the University of Valladolid (Spain), and a master’s degree in Energy Business Management from Club Español de la Energía (Spain).

- **Leonard Rodriguez, Vice President and General Counsel of Avangrid Renewables, LLC:** Leonard Rodriguez is Vice President and General Counsel of Avangrid Renewables and supports Avangrid’s onshore and offshore renewable energy businesses. He also serves as Corporate Secretary to Avangrid Renewables where he manages the corporate process and meetings of the Board of Managers. Prior to this position, Leonard was Deputy General Counsel of Avangrid Networks and General Counsel at UIL Holdings Corporation (UIL). He received a bachelor’s degree from Assumption College and a J.D. from the University of Connecticut Law School. He has attended various leadership training seminars while at Avangrid, UIL and Eversource Energy (his former employer), including completing the two-year Northeast Utilities Finance Academy program. Leonard has been with UIL/Avangrid since 2013 after spending the prior 15 years at Eversource. He is a member of the Bars of Connecticut and Massachusetts.

- **Michael Distefano, Deputy General Counsel of Avangrid Renewables, LLC:** Mike has more than a decade of experience in the renewable energy sector and is responsible for legal matters concerning Avangrid’s offshore and onshore renewable energy generation business. Mike began working on the Vineyard Wind 1 project in 2019 and since 2021, Mike has overseen all legal matters for Avangrid’s offshore wind business, including with respect to leasing, permitting, offtake, financing, and other commercial transactions. Prior to joining Avangrid, Mike spent eight years at two law firms—Sheppard Mullin and Chadbourne & Parke (now part of Norton Rose Fulbright)—where he represented clients engaged in the financing, construction, and development of onshore wind and solar projects as well as in connection with large corporate restructurings. Mike holds a J.D. from the American University, Washington College of Law and a bachelor’s degree in Political Science from Boston College.
12.3.2.2 Key Personnel – Project Development

The Development team is responsible for delivering fully authorized projects that are ready for construction. This task requires navigating multiple technical teams through the process of developing an offshore wind workforce (including supply chain opportunities) in the northeastern US, managing numerous external stakeholders, following through on PPA contract commitments, implementing regional and Project-specific science to support the nascent industry, and obtaining the necessary local, regional, state, and federal authorizations. The work necessitates close coordination with the Delivery team to maintain consistency between what is authorized by the various regulatory agencies and what is ultimately procured, designed, and constructed.
12.3.2.3 Key Personnel – Project Delivery

The Delivery team leads project management and execution aspects of the Projects, with key delivery team members overseeing the WTG supply and installation, foundation supply and installation, inter-array cable supply and installation, as well as the quality, engineering, supply and expediting, construction, commissioning, and systems integration scopes of the Projects.

Avangrid has assigned a robust Delivery team for the Projects. This team of experts defines technical, logistical, and contracting strategies; determines capital expenditure budgets for projects; and procures, negotiates, and manages multi-million/billion offshore delivery contracts. Summary biographies for key members of the Delivery team are provided below as a demonstration of the depth and breadth of experience behind Avangrid’s projects.
12.3.2.4 Key Personnel – Project Management and Origination

The Value Engineering and New Business lead project management and origination activities, compete in lease area auctions, secure offtake awards and long-term contracts, create commercial value for projects, and are responsible for growing Avangrid’s offshore wind project pipeline and ensuring success for the Delivery team.
12.4. Company Project Experience

Provide a listing of all projects the project sponsor has successfully developed or that are currently under construction. Provide the following information as part of the response:

- Name of the project
- Location of the project
- Project type, size and technology
- Distance from shore and mean water depth of project
- Commercial operation date
- Estimated and actual capacity factor of the project for the past three years
- Availability factor of the project for the past three years
- References, including the names and current addresses and telephone numbers of individuals to contact for each reference.

12.4.1 Relevant Projects

Avangrid and its affiliates have extensive onshore and offshore wind project development experience in the US and globally. Avangrid’s project development record includes experience in established and emerging offshore wind markets and pioneering new technologies and approaches.

Avangrid is one of the leading offshore wind developers in the US, with its portfolio projects Vineyard Wind 1, New England Wind 1, New England Wind 2, and Kitty Hawk Wind, as previously described in Section 12.2.1. Additional relevant information about Avangrid’s US offshore wind projects is provided in Table 12.4-1. Table 12.4-2 lists the Iberdrola Group’s global offshore wind projects that are similar to the Projects in complexity and technology used and are operational, under construction, or have secured contracts and are pre-construction. Several of the international projects are similar in scale to
New England Wind 1 and New England Wind 2, particularly those with commercial operation dates (CODs) in the late 2020s.

Attachment 12.4-1 provides a summary of the international offshore wind projects from Table 12.4-2 and Avangrid’s relevant onshore projects. The attachment includes details like real capacity factors and availability factors from the past three years, where available.

Table 12.4-1 Avangrid Offshore Wind Project Experience

<table>
<thead>
<tr>
<th>Project Name and Location</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vineyard Wind 1 OCS-A 0501</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New England Wind 1 OCS-A 0534</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New England Wind 2 OCS-A 0534</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitty Hawk Wind OCS-A 0508 OCS-A 0559</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12.4-2 Iberdrola Group Non-US Projects in Advanced Stages

<table>
<thead>
<tr>
<th>Project Name and Location</th>
<th>Capacity (MW)</th>
<th>Technology Type</th>
<th>Operating Status</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>West of Duddon Sands1 UK</td>
<td>389</td>
<td>SWT-3.6-120 (3.6 MW)</td>
<td>Operational</td>
<td>October 2014</td>
</tr>
</tbody>
</table>
Table 12.4-2 Iberdrola Group Non-US Projects in Advanced Stages

<table>
<thead>
<tr>
<th>Project Name and Location</th>
<th>Capacity (MW)</th>
<th>Technology Type</th>
<th>Operating Status</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wikinger^2 Germany</td>
<td>350</td>
<td>Areva M5000-135 (5 MW)</td>
<td>Operational</td>
<td>October 2018</td>
</tr>
<tr>
<td>East Anglia ONE^3 UK</td>
<td>714</td>
<td>SWT-7-154 (7 MW)</td>
<td>Operational</td>
<td>July 2020</td>
</tr>
<tr>
<td>Saint-Brieuc France</td>
<td>496</td>
<td>SG-8.0-167 (8 MW)</td>
<td>Under construction</td>
<td>2024^4</td>
</tr>
<tr>
<td>Baltic Eagle^5 Germany</td>
<td>476</td>
<td>Vestas V174-9.525 (9.5 MW)</td>
<td>Under construction</td>
<td>2024^4</td>
</tr>
<tr>
<td>Windanker Germany</td>
<td>315</td>
<td>SG 14-236 DD (14 MW + power boost)</td>
<td>Under construction</td>
<td>2026^4</td>
</tr>
<tr>
<td>East Anglia THREE^6 UK</td>
<td>1,400</td>
<td>SG 14-236 DD (14 MW + power boost)</td>
<td>Under construction</td>
<td>2026^4</td>
</tr>
<tr>
<td>East Anglia ONE North^6 and East Anglia TWO^6 UK</td>
<td>1,600</td>
<td>TBD</td>
<td>Pre-Construction</td>
<td>2028 and 2029^4</td>
</tr>
</tbody>
</table>

Notes:
1. A 50/50 joint venture between ScottishPower Renewables and Ørsted.
2. A 51/49 ownership structure with Iberdrola Renewables Deutschland and Energy Infrastructure Partners.
3. A 60/40 ownership structure between ScottishPower Renewables and Bilbao Offshore Holding Limited.
4. Currently projected COD.
5. This is a 51/49 ownership structure with Iberdrola Renewables Deutschland and Masdar.
6. Concurrently developed as East Anglia Hub.
12.5. Responsible Entities

With regard to the bidder's project team, identify and describe the entity responsible for the following, as applicable:

- Construction Period Lender
- Operating Period Lender and/or Tax Equity Provider
- Financial Advisor
- Environmental Consultant
- Facility Operator and Manager
- Owner’s Engineer
- Transmission/Delivery Consultant
- Legal Counsel

Avangrid has extensive contacts and access to the firms required to satisfy the financing, environmental assessment, O&M, engineering, transmission, and legal counsel requirements of New England Wind 1 and New England Wind 2.

- **Construction Period Lender:** Construction financing for the Projects is described in Section 5. Avangrid will advance financing for the Projects after PPA award and execution.

- **Operating Period Lender and/or Tax Equity Provider:** This position will be finalized at the appropriate phase of development. For Vineyard Wind 1, Avangrid and CIP recently closed a $1.2 billion tax equity package with three US-based banks: J.P. Morgan Chase, Bank of America, and Wells Fargo.
12.6. **Experience Meeting Project Schedules**

Describe the experience and expertise of the bidder and project team needed to successfully develop, finance, construct, and operate and maintain its proposed eligible project on schedule and according to the bidder’s commitments to a competitive procurement process.

Describe the Bidder’s continuity of corporate management through successful project development.

Avangrid has demonstrated, through its involvement in Vineyard Wind 1, its expertise in successfully developing, financing, and beginning construction of an American offshore wind project on a reasonable timeline and has gained valuable experience in the process. Vineyard Wind 1, the first approved commercial-scale offshore wind farm in the nation, achieved first power in early 2024 and is working diligently to complete construction.

The Company’s affiliates have even more experience. Iberdrola has an extremely strong track record in the development, financing, construction, and operation of large-scale offshore wind projects. Iberdrola has a total of 1.3 GW in operation with an additional 1.8 GW in operation by 2025 and a further 5 GW of secured and advanced pipeline. Iberdrola has over 900 employees with in-house knowledge and expertise in 11 countries. Iberdrola has a significant annual spend on offshore development projects, and wind development forms the core of the Company’s global organization.
Figure 12.6-1 demonstrates the timelines for the fleet of operational offshore wind farms and Saint-Brieuc, which is nearing the final stage of construction.

Moreover, various team members, as discussed in Section 12.3, have experience advancing projects on schedule and without major complications.

Additionally, the Company has advanced a considerable number of onshore wind projects in line with contract expectations.

Corporate Continuity

The Company successfully navigated the restructuring of the Vineyard Wind 1 joint venture, maintaining management continuity throughout the process. Avangrid and CIP made the decision to restructure to enable both companies to leverage their strengths and expertise to continue to grow the US offshore wind industry. The two companies negotiated a number of agreements to ensure the smooth transition of Vineyard Wind 1 operation during the course of its lifespan.

For example, the Operations and Maintenance Service Agreement and Asset Management Agreement were reached, which designated Avangrid as the party responsible for overseeing the operation and management of the facility once construction is complete and commercial operations begin. Avangrid will lead the operations management of the Projects, including the supervision of critical tasks such as turbine, cable, and substation maintenance, coordination of contractors, 24/7 control center services, trading, and asset management.
12.7. Track Record

Describe the Bidder’s track record developing similar projects, including consideration of any project delays, amendments, defaults, and performance issues, including on prior long-term contracts.

Describe any prior failures to achieve commercial operation dates under other PPAs and credible description of how the current proposed project will avoid similar project delays or development issues.

The Vineyard Wind 1 COD was delayed (within a permissible framework), as is discussed in greater detail in Section 5. As the Projects are more mature than the average project proposal, Avangrid has full confidence that the circumstances of the Vineyard Wind 1 delay will not impact New England Wind 1 and New England Wind 2, which have already obtained or will shortly obtain the majority of required federal permits and have mature options for the supply of major packages.

Avangrid previously entered into 20-year agreements with the Energy Distribution Companies (EDCs) in Massachusetts and Connecticut for energy, capacity, and RECs associated with two prior iterations of the Projects: Park City Wind (804 MW) and Commonwealth Wind (1,232 MW). Following several macroeconomic developments that made the projects unfinanceable at previously agreed pricing levels, Avangrid made the difficult decision to seek termination of its prior PPAs for Commonwealth Wind and Park City Wind. More information regarding the timeline and context for termination of these prior PPAs can be found in Section 5.

Across the US, Avangrid currently has over 19 GW of wind and solar projects in various stages of development. These projects vary in size from 44 MW to over 300 MW. Of these projects, roughly 1.4 GW were awarded PPAs between 2018 and 2022, and close to 750 MW were awarded in 2023. The Company’s onshore renewables unit continues to navigate inflationary markets, supply chain disruptions, and other macroeconomic factors by working with customers to bring projects online according to schedule. Some projects negotiated prior to the COVID-19 global pandemic required adjustments and amendments related to the pandemic and resultant economic and supply chain turmoil, with adjustments including contract price amendments or other re-negotiations. Given that many counterparties are large corporations, whose contracts are protected by confidentiality agreements, Avangrid cannot provide further detail on those amendments.

Avangrid has strong confidence in its ability to deliver the Projects according to the schedule provided in Section 9. The design, permitting, and procurements for the Projects are well-progressed.

12.8. Regulatory or Judicial Forum Experience

Describe the bidder’s relevant experience supporting similar projects in a state or federal regulatory or judicial forum. This experience can be established with examples of one or more key member(s) of the development team advocating in favor of a similar project in a regulatory proceeding, before a court, or in another tribunal.

As described in Section 12.3.2.2 and shown in Attachment 12.1-1, the Project has a powerful Development team with a breadth of experience and expertise, including in advocating for similar
projects in regulatory proceedings and other tribunals. New England Wind 1 recently received approval from the Energy Facilities Siting Board (EFSB) in late 2023, marking a major state permitting victory. New England Wind 1 has now received all major state, regional, and local permits and is slated to receive all major federal permits by July 2024. New England Wind 2 is well on its way to achieving these milestones. Additional information about permitting and regulatory proceedings can be found in Section 7. Select team members’ experience is further described below.

12.8.1 Regulatory and Judicial Advocacy

Avangrid has years of experience successfully advocating for its offshore wind projects in regulatory and judicial forums. A summary of Avangrid's experience advocating for Vineyard Wind 1, New England Wind 1, and New England Wind 2 follows.

12.8.1.1 Vineyard Wind 1 Permitting

Successful development of utility-scale offshore wind projects requires advocacy for permit approval at the local, regional, state, and federal levels. As the first major offshore wind project in the US, Vineyard Wind 1 faced obstacles with receiving federal approvals and permits. Key stakeholders within Avangrid advocated strongly for Vineyard Wind 1 at the federal level, ultimately leading to the successful completion of federal permitting in May 2021.

12.8.1.2 New England Wind 1 Permitting

As further described in Section 7, the maturity of New England Wind 1 permitting demonstrates the team's ability to successfully advocate for the Projects in regulatory and judicial proceedings. Many of the state, regional, and local permit processes, such as the reviews by the Cape Cod Commission, Martha's Vineyard Commission, Barnstable Conservation Commission, Edgartown Conservation Commission, and Nantucket Conservation Commission, included public hearings and votes by commission members.

Additionally, New England Wind 1 proceeded through the EFSB and Department of Public Utilities siting review process, which is a legal proceeding in which the burden was on Avangrid to demonstrate that the Project met the requirements set forth in the relevant statutes and regulations. During the proceeding, the team presented witnesses and evidence, responded to information requests, examined witnesses, and made arguments as to whether the evidence indicated that the proposed Project should be approved.

Furthermore, after facing difficulties with Edgartown's denial of key permits for both Vineyard Wind 1 and New England Wind 1, Avangrid's team was successfully able to navigate a solution that facilitated mediation without judicial action. The Company worked with legal counsel to remand the issue back to Edgartown Conservation Commission, which subsequently issued an Order of Conditions under its local bylaw.

12.8.1.3 New England Wind 2 Permitting

Discussed in detail in Section 7, permitting of New England Wind 2 is well underway. The first permit, an Order of Conditions from the Nantucket Conservation Commission, was issued after proceeding through public hearings held by the Nantucket Conservation Commission. As indicated above, regulatory and judicial advocacy demonstrated for Vineyard Wind 1 and New England Wind 1 will only
serve to bolster the strength of advocacy for the remainder of the New England Wind 2 regulatory and judicial proceedings.

12.8.2 Key Personnel – Regulatory and Judicial Advocacy

Avangrid has ample experience supporting its projects through federal, state, and local regulatory and judicial processes. Vineyard Wind 1, New England Wind 1, New England Wind 2, and other global projects demonstrate that Avangrid is equipped with strong advocates that support offshore wind projects in regulatory proceedings, courts, and other tribunals.

- Ken Kimmell: Ken has experience with development in his prior roles as an attorney at Bernstein, Cushing & Kimmell, a firm specializing in land use law and litigation; general counsel for the Massachusetts Executive Office of Energy and Environmental Affairs; Commissioner of the Massachusetts Department of Environmental Protection, and President of the Union of Concerned Scientists. As the current Chief Development Officer for offshore wind, Ken leads a team to secure and defend necessary federal, state, regional, and local permits for offshore wind projects. This process requires him to actively address stakeholder concerns and garner public support for Avangrid’s projects.
In addition to Avangrid’s internal team, the Projects are supported by [redacted] who have significant experience dealing with regulatory and judicial issues for Vineyard Wind 1, New England Wind 1, and New England Wind 2.

12.9. Previous Terminations

If the bidder or any of its past or present affiliates has either

- Been involved with a complex development project that failed, was withdrawn, or otherwise did not proceed, or
- Defaulted under, or agreed to terminate a contract for a complex development project, then the bidder should provide relevant details.

Avangrid strives to maintain the viability of all project contracts and will work flexibly with customers to explore creative solutions if the need arises. However, the Company has twice previously agreed to terminate a contract for a complex development project.

Due to circumstances beyond its control, Avangrid was forced to terminate PPAs for Park City Wind (similar to what is now being offered by New England Wind 1) and Commonwealth Wind (similar to what is now being offered by New England Wind 2). The combination of the Russian invasion of Ukraine (which wreaked havoc on steel supply), the highest inflation in 40 years, large interest rate increases, and supply chain bottlenecks unique to offshore wind resulted in the cost of the projects outstripping revenues under the contracts, making it impossible to obtain project financing.

These very same factors have affected offshore wind projects around the world, forcing terminations of contracts for other projects in Massachusetts, New Jersey, and New York. Avangrid was the first company to alert officials in Massachusetts and Connecticut to these realities and shared its data in an open and transparent manner. Rather than abandon its projects (as some developers have done), Avangrid recommended the solution of termination and re-bidding. This solution allowed ratepayers to retain substantial security deposits made by the Company, enabled the states to use competitive bidding to identify the projects that would best suit their needs, and ensured that Avangrid could re-bid at prices that it knows would be sufficient to make the Projects financeable and buildable.

Massachusetts and Connecticut, after engaging in good-faith, productive discussions with Avangrid with the common goal of ensuring viability for these projects, did not oppose this approach. In 2023, the Company reached an agreement to terminate its contracts with the Massachusetts EDCs.
(Eversource, National Grid, and Unitil) for Commonwealth Wind, which was awarded contracts pursuant to the Section 83C Round III Procurement.

Similarly, in 2023, the Company reached an agreement to terminate its contracts with the Connecticut EDCs (Eversource, United Illuminating) for Park City Wind, which was awarded contracts pursuant to the 2019 Request for Proposals for Offshore Wind Facilities under Public Act 19-71, An Act Concerning the Procurement of Energy Derived from Offshore Wind. Pursuant to the contracts, Avangrid and the Connecticut EDCs notified the Connecticut Public Utilities Regulatory Authority of the terminated PPAs. The terminations were approved by Connecticut in October 2023.

Avangrid is proud that it addressed this challenge with honesty, integrity, and tenacity, and helped pave the way for others to overcome this challenge. Moreover, once Avangrid broke the ice, other offshore wind developers also disclosed that they were facing the same difficulties, and several of these developers are also opting to terminate and re-bid their projects.

Delivering the capacity previously offered by Commonwealth Wind and Park City Wind remains Avangrid's objective, and there are many reasons why the prior termination situation will not be repeated. The maturity of New England Wind 1, based on its secured permits, site control, interconnection agreements, supply chain lockdown, and a port lease, means that the Project will be "shovel-ready" shortly after PPA execution. A PPA will allow for a prompt Financial Close and Notice to Proceed to contractors. Moreover, New England Wind 1 has price certainty based on all the work that has been done to lock down its supply chain. The combination of price certainty and the short timeline between a PPA award and start of construction greatly lowers the risk that significant additional changes in the macroeconomic conditions will emerge and affect the Project. This same positive dynamic holds true for New England Wind 2, though not to the same extent as that Project is further behind in the development process.
New England Wind Projects Deliver the Full Economic Promise of Offshore Wind from the South Coast to the North Shore and Beyond

Avangrid, through New England Wind 1 and New England Wind 2 (the Projects), is committed to delivering transformational supply chain investments and economic benefits to Massachusetts, from the South Coast to the North Shore and beyond. Building on the Commonwealth's offshore wind leadership, the Projects will help establish New England as a national anchor for the US offshore wind supply chain, capitalize on the generational opportunities offshore wind can bring to diverse communities and regions in Massachusetts, and establish lasting jobs and economic benefits.

Per the requirements of the Offshore Wind Multi-State Coordination Memorandum of Understanding1 (Multi-State MOU) issued on October 3, 2023, and the Multi-State Proposal Form2 that was subsequently issued on November 16, 2023, the proposals that are being offered only to Massachusetts are contingent upon corresponding Multi-State Proposals not being selected.

13.0. Overview

As the most advanced project bidding into this solicitation, New England Wind 1 is shovel-ready and offers the highest degree of certainty on the economic and other benefits it can deliver, including (though not limited to):

Similarly, New England Wind 2 is highly advanced compared to other offshore wind projects in the region and will directly benefit from New England Wind 1’s critical commitments listed above.⁴
This suite of verifiable and demonstrable commitments made by the two Projects to the Commonwealth provides substantial, meaningful, and timely benefits.

13.0.1 Strong Commitments Backed by Firm Partnerships

Avangrid has a strong record of delivering benefits to Massachusetts, which is at the core of Avangrid’s offshore wind business. Avangrid is also jointly constructing and solely operating the first-in-the-nation Vineyard Wind 1 project, which is delivering power to the Commonwealth and generating thousands of new jobs for union and non-union workers.

Figure 13.1-1 summarizes key economic benefits to Massachusetts.

The Projects will generate significant economic benefits through a series of new local, regional, and state-wide partnerships that firmly expand and sustain the local offshore wind industry, delivering opportunities to communities throughout the Cape and Islands, South Coast, Boston, and the North Shore. Avangrid's investments and partnerships will have rippling positive effects throughout the rest
of New England, primarily in Connecticut and Rhode Island.

The supply chain initiatives associated with the Projects will cement Massachusetts’ status as a nation-leading offshore wind construction, manufacturing, and operations hub, and will be further augmented by the complementary suite of directly funded initiatives offered in the MA Bids.

Table 13.0-1 Total Economic Benefits to Massachusetts

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: One full-time equivalent (FTE) job-year is the equivalent of one person working full time for one year (2,080 hours). Thus, two half-time employees would equal one full-time equivalent.
These commitments are summarized in Section 13.1.2 and Section 13.1.3 and detailed in Section 13.1.4.

13.0.2 Summary of Major New England Wind 1 Initiatives

As proposed to Massachusetts, through supply chain partnerships and economic benefit initiatives, New England Wind 1 will:
13.0.3 Summary of New England Wind 2 Additional Benefits

All the initiatives summarized above are tied to the award of the New England Wind 1 MA Bid. However, New England Wind 2 also strengthens many of the same initiatives.
In addition to these primary verifiable commitments to create and foster employment and economic development in the Commonwealth, Avangrid has identified several regional investments that could support either the MA Bids or the Multi-State Bids.

13.0.4 Detailed Descriptions of Major Initiatives

Avangrid’s strategic partnerships and robust commitments to the Commonwealth provide critical advantages and benefits in comparison to other offshore wind projects. Through these key initiatives, the Projects will enhance local content, create jobs, and provide lasting economic impacts to Massachusetts and the region. Major commitments proposed across the Commonwealth are summarized in the following subsections.
13.0.4.5 Interconnection and Onshore Grid Upgrades in Cape Cod

New England Wind 1 and New England Wind 2 will each interconnect to the ISO-NE control area via a high voltage alternating current transmission system through a point of interconnection at the West Barnstable Substation, as described in Section 6. These interconnections, while still among the most cost-effective interconnection solutions in Massachusetts, trigger substantial grid upgrades that will transform the electrical grid in Cape Cod and provide meaningful economic benefits in Massachusetts.
<table>
<thead>
<tr>
<th>Workforce Commitments</th>
<th>Supply Chain Commitments</th>
<th>Community and Environmental Investments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitment 1</td>
<td>Commitment 2</td>
<td>Commitment 3</td>
</tr>
<tr>
<td>Commitment 4</td>
<td>Commitment 5</td>
<td>Commitment 6</td>
</tr>
<tr>
<td>Commitment 7</td>
<td>Commitment 8</td>
<td>Commitment 9</td>
</tr>
<tr>
<td>Commitment 10</td>
<td>Commitment 11</td>
<td>Commitment 12</td>
</tr>
<tr>
<td>Commitment 13</td>
<td>Commitment 14</td>
<td>Commitment 15</td>
</tr>
<tr>
<td>Commitment 16</td>
<td>Commitment 17</td>
<td>Commitment 18</td>
</tr>
<tr>
<td>Commitment 19</td>
<td>Commitment 20</td>
<td>Commitment 21</td>
</tr>
<tr>
<td>Commitment 22</td>
<td>Commitment 23</td>
<td>Commitment 24</td>
</tr>
<tr>
<td>Commitment 25</td>
<td>Commitment 26</td>
<td>Commitment 27</td>
</tr>
<tr>
<td>Commitment 28</td>
<td>Commitment 29</td>
<td>Commitment 30</td>
</tr>
<tr>
<td>Commitment 31</td>
<td>Commitment 32</td>
<td>Commitment 33</td>
</tr>
<tr>
<td>Commitment 34</td>
<td>Commitment 35</td>
<td>Commitment 36</td>
</tr>
<tr>
<td>Commitment 37</td>
<td>Commitment 38</td>
<td>Commitment 39</td>
</tr>
<tr>
<td>Commitment 40</td>
<td>Commitment 41</td>
<td>Commitment 42</td>
</tr>
</tbody>
</table>

Table 13.0-2 Key Commitments for Workforce, Supply Chain, and other Community and Environmental Investments
Table 13.0-2 Key Commitments for Workforce, Supply Chain, and other Community and Environmental Investments

<table>
<thead>
<tr>
<th>Commitment</th>
<th>Workforce</th>
<th>Supply Chain</th>
<th>Community & Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Increase workforce diversity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Improve supply chain efficiency</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Support community initiatives</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4. Enhance environmental practices</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5. Implement sustainable sourcing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6. Promote employee well-being</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7. Foster economic development</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8. Enhance environmental stewardship</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: Specific details for each commitment are not provided in the table.
Table 13.0-2 Key Commitments for Workforce, Supply Chain, and other Community and Environmental Investments

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.1. Job Creation

Please provide an estimate of the number of jobs to be created directly during project development and construction, and during operations, and a general description of the types of jobs created, duration of employment, estimated annual compensation, the employer(s) for such jobs, and the location. Employment impacts should be broken out by state and the region as a whole and highlight any impacts in economically distressed areas. Please treat the development, construction, and operation and maintenance periods separately in your response. All information provided must be measurable.

Please describe employment opportunities for members of federally recognized and state acknowledged tribes in the Commonwealth, workers from low-income communities and certified minority-owned and women-owned small business enterprises in the Commonwealth, as well residents of any Environmental Justice neighborhoods impacted by the project.

Please describe any investments in workforce development to support the offshore wind industry, which may include partnerships with proximate vocational and technical schools, community colleges, labor groups, and community-based organizations to create paid training, internship, apprenticeship programs and educational programs paired with transitional work opportunities.

Please describe project support for workforce harmony and community benefits through Community Benefits Agreements and workforce agreements with appropriate labor organizations for construction, renovation, reconstruction, alteration, installation, demolition, expansion, maintenance and repair.

Please describe the status of any contractual commitments with respect to direct job creation and provide any pertinent agreements that have been executed.

The Projects will create substantial short-term and long-term employment in the Commonwealth and the region. These jobs are the result of direct project activities through Avangrid and its contractors.
(referred to in this Section as “Avangrid”) as a direct result of award.
Table 13.1-1 Summary of Massachusetts Job Creation (FTE Job-Years)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to the substantial jobs created in Massachusetts, New England Wind 1 and New England Wind 2 will have positive employment impacts across the region, as described in Table 13.2-2. Undoubtedly, the MA Bids prioritize the greatest job creation in Massachusetts through their many economic benefit initiatives.
Table 13.1-2 Regional Job Creation

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14.0.1 Development Direct Jobs

Avangrid contributes to the Massachusetts economy on an ongoing basis through the Vineyard Wind 1 and New England Wind 1 and New England Wind 2 projects, with existing offices in New England.

Table 13.1-3 Development Job Examples

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13.1-3 Development Job Examples

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.1.2 Construction Direct Jobs

Local construction will be centered around the port facilities involved in the construction and installation of the Projects.
<table>
<thead>
<tr>
<th>Construction Job Examples</th>
<th>Duration (Years)</th>
<th>Average Annual Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13.1-4 Construction Job Examples

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Duration (Years)</th>
<th>Average Annual Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Jobs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.1.3 Operations Direct Jobs

The O&M phase creates high-quality, long-term job opportunities that require a variety of educational backgrounds and expertise.
Table 13.1-5 Operations Job Examples

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.1.4 Impacts on Economically Distressed Areas

Equally important to the immense job creation of the Projects is the equitable distribution of job opportunities to candidates across a diverse range of backgrounds and economic circumstances. These positions will be high-paying jobs requiring various levels of education and training credentials in the trades, including a substantial number of positions that do not require post-secondary education.

This extensive skilled industrial job creation at the Salem Offshore Wind Terminal is but one example of the Projects' economic benefits to economically distressed areas and does not include the many blue-collar, as well as white-collar, jobs that will be created across all of the major initiatives.

The Projects will spur meaningful job creation in economically distressed areas, all at competitive wages with year-round and long-term opportunities for a variety of roles.
13.1.5 Strong Commitments to Workforce DEI

Avangrid is committed to investing in workforce and supply chain DEI. Accomplishing living and working conditions that support people in their local community is an essential goal of the Projects. Investments in occupations that include construction and permitting, maritime, development, O&M will be available to the local workforce community. If awarded, the Projects will provide sustainable workforce opportunities and career paths for members of federally recognized and state acknowledged tribes in the Commonwealth, workers from low-income communities, and certified minority-owned and women-owned small business enterprises in the Commonwealth, as well residents of any EJ neighborhoods impacted by the Projects. Furthermore, the project team has leveraged its experience and longevity working with key players within the Massachusetts workforce and supply chain development system to develop a substantial suite of strategic partnerships to bolster the quality of DEI efforts within the Projects and long-term in the industry. A detailed description of Avangrid’s commitments to increasing workforce and supply chain diversity is provided in the DEI Plan described in Section 13.8.

Aligned with the MassCEC 2023 Workforce Needs Assessment,12 Avangrid is committed to supporting a just transition with intentional efforts, beginning with expanding awareness of clean energy careers. As detailed in the DEI Plan, Avangrid has committed funds to create numerous inclusive and accessible pathways for Massachusetts residents and businesses to engage with the offshore wind industry long-term.

As described in the DEI Plan, Avangrid is invested in increasing these key populations’ access to the significant opportunities created by the Project and has committed to promoting initiatives that will bolster that access and opportunity.

13.1.5.1 Workforce Harmony and Agreements

Avangrid is among the most advanced US offshore wind developers with regards to sustaining strong relationships and collaboration with labor. Vineyard Wind 1 executed a PLA in 2021 and has been constructing the project according to the PLA requirements, far exceeding the expected union job creation with over 1,000 jobs created to date.\(^\text{13}\)

13.2. Tax Credits

Please describe any plans to meet federal domestic content and labor requirements in order to maximize federal tax credits available to the project under the Inflation Reduction Act (IRA).
13.3. Economic Activity and Development

Please describe and quantify any other economic activity or development expected to result directly from the proposed project. Impacts should be broken out by state and the region as a whole and highlight any impacts in economically distressed areas. Direct economic activity/development will be evaluated based on scale relative to project size, credibility and firmness. Preference will be given to commitments that secure long-term benefits; begin to provide benefits during project development, construction, installation, and the first five years of operations; direct benefits to Environmental Justice populations and host communities. Commitments will be evaluated by the degree or extent to which the asserted benefits are contractually committed to by the bidder. Specific commitments to economic activity or development may include (but are not limited to):

Direct and reasonably certain commitments made on or after July 1, 2022 to capital investments in the manufacture, fabrication and assembly within the Commonwealth of domestic supply chain components of the offshore wind industry. Bidders are further directed to describe, if applicable, how the proposed supply chain investments are complementary to any other supply chain investments made by the parent company to support other offshore wind projects in the region.
New England Wind 1 and New England Wind 2 will directly generate substantial economic activity in the Commonwealth across all project stages. This is the result of direct project-related activities undertaken by Avangrid and its contractors, as well as the activities of key, committed supply chain partners for the Projects. Table 13.4-1 summarizes the expenditure and investment generated by each Project.

Table 13.3-1 Massachusetts Expenditure & Investment
As shown in Table 13.4-2, in addition to the substantial economic benefit created in Massachusetts, New England Wind 1 and New England Wind 2 will have positive economic impacts across the region. Undoubtedly, the MA Bids prioritize the greatest expenditure and investment in Massachusetts through their many economic benefit initiatives.

Table 13.3-2 Regional Expenditure & Investment (millions)
14.0.1 Investments in Supply Chain Improvements

New England Wind 1 will result in substantial and meaningful investment in the Massachusetts-based Tier 1 and Tier 2 supply chain. If the New England Wind 1 MA Bid is awarded, the Project will enable the following critical investments and related economic activity:
These investments and others described in **Section 13.1** have the potential to generate substantial economic activity and substantial additional investments in offshore wind supply chain capabilities throughout Massachusetts, particularly beneficial to Tier 2 and Tier 3 suppliers, and support future project-related economic activities for the remaining offshore wind capacity that Massachusetts procures.

13.3.2 Workforce Development
13.4. Contractual Commitments

Please describe the status of any contractual commitments with respect to economic development and provide any pertinent agreements that have been executed.

Please specify the administrator of any funds (i.e. fund administered by a third-party or by the Bidder).

Avangrid has executed agreements to guarantee the viability of both Projects and the delivery of the economic benefits presented in this section. **Table 13.5-1** outlines the contractual status of the Projects’ key commitments related to economic development.

Table 13.4-1 Key Economic Benefit Initiatives Contractual Commitments Status
<table>
<thead>
<tr>
<th>#</th>
<th>Key Economic Benefit Initiatives</th>
<th>Contractual Commitments</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiative</td>
<td>Economic Benefit</td>
<td>Contractual Commitments</td>
<td>Status</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Initiative 1</td>
<td>Economic Benefit 1</td>
<td>Contractual Commitments 1</td>
<td>Status 1</td>
</tr>
<tr>
<td>Initiative 2</td>
<td>Economic Benefit 2</td>
<td>Contractual Commitments 2</td>
<td>Status 2</td>
</tr>
<tr>
<td>Initiative 3</td>
<td>Economic Benefit 3</td>
<td>Contractual Commitments 3</td>
<td>Status 3</td>
</tr>
<tr>
<td>Initiative 4</td>
<td>Economic Benefit 4</td>
<td>Contractual Commitments 4</td>
<td>Status 4</td>
</tr>
<tr>
<td>Initiative 5</td>
<td>Economic Benefit 5</td>
<td>Contractual Commitments 5</td>
<td>Status 5</td>
</tr>
<tr>
<td>Initiative 6</td>
<td>Economic Benefit 6</td>
<td>Contractual Commitments 6</td>
<td>Status 6</td>
</tr>
<tr>
<td>Initiative 7</td>
<td>Economic Benefit 7</td>
<td>Contractual Commitments 7</td>
<td>Status 7</td>
</tr>
<tr>
<td>Initiative 8</td>
<td>Economic Benefit 8</td>
<td>Contractual Commitments 8</td>
<td>Status 8</td>
</tr>
<tr>
<td>Initiative 9</td>
<td>Economic Benefit 9</td>
<td>Contractual Commitments 9</td>
<td>Status 9</td>
</tr>
<tr>
<td>Initiative 10</td>
<td>Economic Benefit 10</td>
<td>Contractual Commitments 10</td>
<td>Status 10</td>
</tr>
<tr>
<td>Initiative 11</td>
<td>Economic Benefit 11</td>
<td>Contractual Commitments 11</td>
<td>Status 11</td>
</tr>
<tr>
<td>Initiative 12</td>
<td>Economic Benefit 12</td>
<td>Contractual Commitments 12</td>
<td>Status 12</td>
</tr>
<tr>
<td>Initiative 13</td>
<td>Economic Benefit 13</td>
<td>Contractual Commitments 13</td>
<td>Status 13</td>
</tr>
<tr>
<td>Initiative 14</td>
<td>Economic Benefit 14</td>
<td>Contractual Commitments 14</td>
<td>Status 14</td>
</tr>
<tr>
<td>Initiative 15</td>
<td>Economic Benefit 15</td>
<td>Contractual Commitments 15</td>
<td>Status 15</td>
</tr>
<tr>
<td>Initiative 16</td>
<td>Economic Benefit 16</td>
<td>Contractual Commitments 16</td>
<td>Status 16</td>
</tr>
</tbody>
</table>
13.5. Additional Benefits (Section 2.2.4.1 Factors)

To the extent not already specified elsewhere in your response, please address the factors listed in RFP Section 2.2.4.1 and describe any benefits or impacts associated with the proposed project.

A summary of those market impacts is provided in Table 13.6-1 and Table 13.6-2 for each Project.
Table 13.5-1 Direct Contract Impacts (NPV' 2023$)

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New England Wind 1</td>
<td>New England Wind 2</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13.5-3 Massachusetts Ratepayer Bill Impact

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.6. Low-Income Ratepayer Impacts and Benefits

Please demonstrate any benefits to low-income ratepayers in the Commonwealth, as outlined in Section 2.2.4.2, and describe how the project minimizes and mitigates, to the extent feasible, ratepayer impacts. Benefits to low-income ratepayers may include, but are not limited to, projects that reduce the energy burden for low-income ratepayers through energy efficiency or renewable energy upgrades; direct funding of rate relief through grant programs, support of existing community programs or other funding opportunities. Describe the impact, if any, those benefits will have on the cost to the project.

Please provide copies of any agreements to effectuate those benefits.

Avangrid remains committed to benefiting all communities in Massachusetts, particularly historically marginalized communities.
13.7. Diversity, Equity, and Inclusion Plan

Please provide a diversity, equity and inclusion plan that includes a Workforce Diversity Plan and the Supplier Diversity Program Plan as outlined in Section 2.2.4.3 of the RFP. Describe consultation with the Massachusetts Supplier Diversity Office, as applicable.

Over the last five years of developing the two Projects, as well as the development and construction of Vineyard Wind 1, Avangrid has demonstrated a commitment to building a diverse, equitable, and inclusive offshore wind sector in Massachusetts.
13.8. Tracking and Reporting

Please describe the strategy and mechanisms to track and report on any applicable commitments, including progress in achieving promised employment and economic benefits and the goals in the diversity, equity and inclusion plan, based on the template provided in the Form MOU with DOER and MassCEC and any other supplemental plans for tracking and reporting.

Please provide a marked version of the Form MOU with DOER and MassCEC for this solicitation (see Appendix L) showing any specific proposed changes to the Form MOU. Bidders are discouraged from proposing any material changes or conditions to the Form MOU and any such changes will be considered in the Stage Two Qualitative Evaluation.

Avangrid commits to tracking progress on all applicable commitments described in this Section, including progress on achieving promised employment and economic benefits as well as the implementation of the DEI plan.
13.8.1 Vineyard Wind 1 Tracking and Reporting

Avangrid’s joint venture Vineyard Wind committed to economic benefits tracking and reporting in its 83C-I proposal for Vineyard Wind 1. This commitment entailed working with the UMass Dartmouth Public Policy Center16 to track and report on the direct and indirect economic activities associated with that project. The joint venture has since finalized an agreement with UMass Dartmouth to collect data on job creation and perform an economic and workforce analysis of Vineyard Wind 1 impacts, with reports submitted to DOER and MassCEC on an annual basis. The second report was issued in December 2023 and is included as Attachment 13.9-2. As of December 2023, Vineyard Wind 1 had nearly doubled its initial expectations (and PLA commitment) for job creation in the region, with the creation of over 937 labor union jobs in only two years of construction17.

13.9. Economic Development Summary Sheet

The Section 13 Addendum: Economic Development Summary Sheet is a Microsoft Excel workbook provided on MACleanEnergy.com. Please fill out and submit the Section 13 Addendum to accompany responses in this section.

16 The Public Policy Center at UMass Dartmouth no longer exists, but Vineyard Wind has been able to implement this tracking commitment with UMass Dartmouth directly with efforts to be led by several of the staff that formerly worked at the Public Policy Center.

14. Exceptions to Form PPA

Please attach an explanation of any exceptions to the Form PPA set forth in Appendices B-1 and B-2. Comments to the proposed Form PPA must include any specific alternative provisions in a redline format to the Form PPA. If the bidder is proposing a two-phased project with each phase covered by a separate contract, the bidder should provide two separate contracts with specific alternative provisions to the Form PPA in redline format. Bidders are discouraged from proposing material changes to the Form PPA.

The Form Power Purchase Agreement (PPA) redlines, included as Attachments 14.0-1 and 14.0-2, detail certain requested changes to be negotiated between the parties.
15. Exceptions to Form Commitment Agreement

Please attach an explanation of any exceptions to the Form Commitment Agreement set forth in Appendix G. Comments to the proposed Form Commitment Agreement must include any specific alternative provisions in a redline format to the Form Commitment Agreement. **Bidders are discouraged from proposing material changes to the Form PPA.**

The Form Commitment Agreement redline is included as Exhibit G in Attachments 14.0-1 and 14.0-2 as part of Avangrid’s redlines of the form Power Purchase Agreements for Offshore Wind Energy Generation (Form PPAs). The redline details certain requested changes to be negotiated between the parties.